某数除以11余3,除以13余3,除以17余12,那么这个数的最小可能值是 ,最小的五位数是 。
答案与解析:
设原数为M,从M中减去3,则是11和13的公倍数,即M-3=[11,13]m,则M=143m+3,
M除以17余12,即143m+312(mod17),那么143m9(mod17),
那么7m9(mod17),从m=1开始检验,发现当m=11时,M=1576满足条件,是最小值。其他满足条件的数肯定是在1576的基础上加上11,13和17的公倍数。
[11,13,17]=2431。
1576+2431×3=8869<10000,1576+2431×4=11300>10000,那么11300是最小的满足条件的五位数。
正在阅读:
六年级奥数题公倍数含答案04-02
广西南宁市第二人民医院2017-2018学年住院医师规范化培训学员招生报名通知11-02
2017年数学花园探秘初赛迎春杯试题C卷(四年级)07-10
2021年10月重庆自考报名入口(8月25日开通)09-17
五年级第二学期班主任工作计划表格-五年级班主任每周工作计划表格05-23
教育实习自我鉴定两篇11-14
[2020年企业入党积极分子思想汇报工作方面]2020企业职工入党积极分子思想汇报【四篇】12-14