奇数与偶数(二) 阅读思考: 例1. 有5张扑克牌,画面向上。小明每次翻转其中的4张,那么,他能在翻动若干次后,能使5张牌的画面都向下吗? 分析与解答:同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。而小明所以无论他翻动多少次,都不能使5张牌画面都向下。 变为向下。要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。 每次翻动4张,不管翻多少次,翻动的总张数都是偶数。 其实,在日常生活中同学们就已经接触了很多的奇数、偶数。 凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,因为偶数是2的倍数,所以通常用2k这个式子来表示偶数(这里k是整数)。因为任奇数和偶数有许多性质,常用的有: 性质1 两个偶数的和或者差仍然是偶数。 例如:8+4=12,8-4=4等。 两个奇数的和或差也是偶数。 例如:9+3=12,9-3=6等。 奇数与偶数的和或差是奇数。 例如:9+4=13,9-4=5等。 单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。 性质2 奇数与奇数的积是奇数。 例如:91199等 偶数与整数的积是偶数。 例如:2510,2816等。 性质3 任何一个奇数一定不等于任何一个偶数。 大于零的奇数又叫单数。 何奇数除以2其余数都是1,所以通常用式子2k1来表示奇数(这里k是整数)。 例2. 甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒。那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的? 分析与解答:不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子。 如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个。否则甲盒子中的黑子数不变。也就是说,李平每次从甲盒子拿出的黑子数都是偶数。由于181是奇数,奇数减偶数等于奇数。所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子。 例3. 如图(1-1)是一张88的正方形纸片。将它的左上角一格和右下角一格去掉,剩下的部分能否剪成若干个12的长方形纸片? 图(1-1) 偶 偶 奇 奇 偶 偶 图(1-2) 分析与解答:如图1-2,我们在方格内顺序地填上奇、偶两字。这时就会发现,要从上面剪下一个12的长方形纸片,不论怎样剪,都会包含一个奇,一个偶。我们再数一下奇字和偶字的个数,奇字有30个,偶字有32个。所以这张纸不能剪成若干个12的长方形纸片。 2. 一串数排成一行,它们的规律是:前两个数都是1,从第三个数开始,每个数都是前两个数的和,也就是: 1,1,2,3,5,…… 那么这串数的第100个是奇数还是偶数? 分析与解答: 这道题的规律是两奇一偶,第100个为奇数。 本文来源:https://www.wddqw.com/doc/0b867d7a763231126edb11bf.html