等比数列求和公式有哪些 高中数学的等比数列求和公式还有哪些同学知道呢?如果不知道,请往下看。下面是由小编为大家整理的“等比数列求和公式有哪些”,仅供参考,欢迎大家阅读。 等比数列求和公式有哪些 1)等比数列:a(n+1)/an=q, n为自然数。 (2)通项公式:an=a1*q^(n-1); 推广式: an=am·q^(n-m); (3)求和公式:Sn=n*a1(q=1) Sn=a1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =a1/(1-q)-a1/(1-q)*q^n ( 即a-aq^n) (前提:q不等于 1) (4)性质: ①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq; ②在等比数列中,依次每 k项之和仍成等比数列. (5)“G是a、b的等比中项”“G^2=ab(G≠0)”. (6)在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方。 拓展阅读:等比数列求和公式怎么推导 首项a1,公比q a(n+1)=an*q=a1*q^(n ) Sn=a1+a2+..+an q*Sn=a2+a3+...+a(n+1) qSn-Sn=a(n+1)-a1 S=a1(q^n-1)/(q-1) 1、等比数列的意义:一个数列,如果任意的后一项与前一项的比值是同一个常数,即:A(n+1)/A(n)=q (n∈N*),这个数列叫等比数列,其中常数q 叫作公比。如:2、4、8、16......2^10 就是一个等比数列,其公比为2,可写为(A2)的平方=(A1)x(A3)。 2、求和公式 等比数列求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1)=a1(q^n-1)/(q-1) (q为公比,n为项数) 等比数列求和公式推导: Sn=a1+a2+a3+...+an(公比为q) q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+a(n+1) Sn-q*Sn=a1-a(n+1) (1-q)Sn=a1-a1*q^n Sn=(a1-a1*q^n)/(1-q) Sn=(a1-an*q)/(1-q) Sn=a1(1-q^n)/(1-q) 3、数学:数学(mathematics),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。借用《数学简史》的话,数学就是研究集合上各种结构(关系)的科学,可见,数学是一门抽象的学科,而严谨的过程是数学抽象的关键。数学在人类历史发展和社会生活中发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。 本文来源:https://www.wddqw.com/doc/10b855c8c2c708a1284ac850ad02de80d4d806ac.html