圆柱和圆锥的体积 教学目标: 1. 结合具体情境,通过探索与发现,理解并掌握圆柱、圆锥体积的计算方法,并能解决简单的实际问题。 2. 经历探索圆柱、圆锥体积计算公式的过程,进一步发展空间观念。 3. 在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。 教学重点和难点: 圆柱、圆锥体积的计算方法,以及体积公式的探索推导过程。 教具准备:多媒体课件、圆锥、圆柱体积学具、沙子等。 第一课时 教学过程: 一、创设情境,激趣引入。 谈话:同学们,天气渐渐热了,在夏季同学们最喜欢的冷饮是什么?(生回答) 课件出示:两个圆柱体冰淇淋。 谈话:看,小明买了两个冰淇淋,你能猜猜哪种包装盒体积大吗? (生猜测)这节课我们就来研究圆柱的体积。(板书课题——圆柱体的体积。) 二、回忆旧知,实现迁移。 谈话:怎样求圆柱的体积呢?我们也许能从以前研究问题的方法里得到启示,找到解决问题的办法。请大家想一想,在学习圆的面积时,我们是怎样推导出圆的面积计算公式的? (学生回答后,教师利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。) ㈠交流猜测 谈话:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的立体图形来求体积吗? 生:我们学过长方体的体积,可不可以将圆柱转化成长方体呢? 师谈话:你的想法很好,怎样转化呢? 生讨论,交流。 生汇报,可能会有以下几种想法: 1 1.先在圆柱的底面上画一个最大的正方形,再竖着切掉四周,得到一个长方体,然后把切下的四块拼在一起。 2.可以把圆柱的底面分成许多相同的扇形,然后竖着切开,重新拼一拼。 3.如果是橡皮泥那样的,可以把它重新捏成一个长方体,就能计算出它的体积了。 谈话:请同学讨论和评价一下,哪一种方法更合理呢?引导学生按照第二种方法进行验证。 ㈡实验验证 学生动手进行实验。 谈话:请每个小组拿出学具,按照刚才第3小组的方法把它转化为近似的长方体,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。 学生合作操作,集体研究、讨论、记录。 四、分析关系,总结公式 1.全班交流 谈话:哪个小组愿意展示一下你们小组的研究结果? 引导学生发现: 转化后的形状变了,但是体积没有变,底面的面积没有变,高也没有变。 2.分析关系 引导说出:圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。 3.总结公式。 谈话:同学们真了不起!你们的发现非常正确。我们来看一看课件演示。 (课件分别演示将圆柱等分成16份、32份、64份的割拼过程,学生观察、思考。) 谈话:你发现了什么? 引导观察:分的份数越多,拼成的图形就越接近长方体。 (课件动态演示:圆柱的高——长方体的高,圆柱的底面积——长方体的底面积。) 谈话:其实大家刚才又采用了“化圆为方”的方法将圆柱转化成了长方体。你现在能总结出圆柱体积的计算公式吗?说一说你是怎样想的。 根据学生的回答教师板书: 长方体的体积 = 底面积 × 高 2 本文来源:https://www.wddqw.com/doc/15943c11f4ec4afe04a1b0717fd5360cba1a8dff.html