六年级毕业考试是很重要的考试,很多学生想知道毕业考试的重点是什么,小编整理了一些数学重要的知识点。 分数乘法意义 1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。 “分数乘整数”指的是第二个因数必须是整数,不能是分数。 2、一个数乘分数的意义就是求一个数的几分之几是多少。 “一个数乘分数”指的是第二个因数必须是分数,不能是整数。 分数乘法计算法则 1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。 (1)为了计算简便能约分的可先约分再计算。(整数和分母约分) (2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。 2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母) (1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。 (2)分数化简的方法是:分子、分母同时除以它们的公因数。 (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。 工程问题 基本公式: ①工作总量=工作效率×工作时间 ②工作效率=工作总量÷工作时间 ③工作时间=工作总量÷工作效率 基本思路: ①假设工作总量为“1”(和总工作量无关); ②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间。 比和比例 1、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。 比的性质用于化简比。 比表示两个数相除;只有两个项:比的前项和后项。 2、比和比例的区别 (1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b这是比。比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。a:b=3:4这是比例。 (2)比的基本性质和比例的基本性质意义不同、应用不同。 比的性质:比的前项和后项都乘或除以一个不为零的数。比值不变。 比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。比例的性质用于解比例。联系:比例是由两个相等的比组成。 以上是小编整理的六年级数学重要的知识点,希望能帮到你。 本文来源:https://www.wddqw.com/doc/201a014ebbd528ea81c758f5f61fb7360a4c2b4d.html