正弦函数余弦函数的性质

时间:2023-04-13 20:00:41 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
正弦函数余弦函数的性质

正弦函数y=sinx;余弦函数y=cosx。正弦函数在[-π/2+2kπ,π/2+2kπ]上单调递增,在[π/2+2kπ,3π/2+2kπ]上单调递减;余弦函数在[-π+2kπ,2kπ]上单调递增,在[2kπ,π+2kπ]上单调递减等。正弦函数y=sinx;余弦函数y=cosx。正弦函数在[-π/2+2kπ,π/2+2kπ]上单调递增,在[π/2+2kπ,3π/2+2kπ]上单调递减;余弦函数在[-π+2kπ,2kπ]上单调递增,在[2kπ,π+2kπ]上单调递减等。

性质1、单调区间

正弦函数在[-π/2+2kπ,π/2+2kπ]上单调递增,在[π/2+2kπ,3π/2+2kπ]上单调递减

余弦函数在[-π+2kπ,2kπ]上单调递增,[2kπ,π+2kπ]上单调递减

2、奇偶性 正弦函数是奇函数 余弦函数是偶函数 3、对称性

正弦函数关于x=π/2+2kπ轴对称,关于(kπ,0)中心对称 余弦函数关于x=2kπ对称,关于(π/2+kπ,0)中心对称 4、周期性


正弦余弦函数的周期都是2π


本文来源:https://www.wddqw.com/doc/2506f9adaa956bec0975f46527d3240c8547a1be.html