有理数知识点总结(2016) 第一章 有理数 1.1正数和负数 一、概念 1、正数:大于零的数,有时根据需要在正数前面加“+”(正号) 2、负数:在正数前面加上“—”(负号)的数 说明:一个数前面的“+”“—”叫做它的号,其中“+”有时可以省略,但仍然表示正数,有时“+”是为了强调它是正数,但“—”号是绝对不能省略的。 3、0既不是正数也不是负数,它是正负数的分界。 说明:关于0的总结——实数,自然数,有理数,整数,非正数,非负数,偶数,相反数是本身,没有倒数,绝对值是本身,正负数分界 二、实际应用 在解决 一些实际问题时,可以认为规定具有相反意义的量的正负。 例如:收入为正,支出为负,收支平衡为0 零上为正,零下为负,分界为0 向北(东)走为正,向南(西)走为负,原地不动为0 加分为正,扣分为负,不加不扣为0 逆时针为正,顺时针为负 超标为正,低标为负,标准为0 地上为正,地下为负,地面基准为0 盈余为正,亏空为负,收支平衡为0 水位上升为正,水位下降为负,水平面为0 高于平均分为正,低于平均分为负 增加为正,减少为负,不增不减为0 海平面以上为正,以下为负,海平面记为0 三、易错易误点 1、-a一定是负数么? 答案:不一定,需要分类分析 解析:当a大于0时,-a就是负数;当a等于0时,-a为0;当a小于0时,-a是正数 因此,a不一定是正数也不一定是负数,判断字母的正负时,需要分类讨论,也不能忽略0的存在。 2、海拔0米并不表示没有海拔,而是说海拔中海平面的平均高度为0米。 3、非正数:0和负数 非负数:0和正数 1.2 有理数 一、概念 1、有理数:正整数,0,负整数,正分数,负分数都可以写成分数(含有限小数和无限循环小数)的形式,这样的数称为有理数。 2、无理数:既不是正数也不是分数,就一定不是有理数。如无限不循环小数π=3.1415926… 它不能化成分数形式。 二、分类 1、按定义分类;有理数分为整数(正整数、0、负整数);分数(正分数、负分数) 2、按性质符号分类;有理数分为正有理数(正整数、正分数)、0、负有理数(负整数、负分数) 三、数轴 1、定义:数轴是一条可以向两端无限延伸的直线 规定三要素——原点,正方向,单位长度 注意“规定”二字,是说三要素是根据实际需要认为规定的。 2、画法:(必须用直尺!) (1)先画一条直线 (2)在直线上任取一点,作为原点,记为0 (3)选取适当的长度作为单位长度,从原点向右(向左)每隔一个单位长度取一点。 3、与有理数的关系 所有的有理数都可以用数轴上的点表示,通常“正右负左,原点中间”; 但数轴上的点不都来表示有理数。 四、相反数(重点) 1、概念 (1)几何定义:在数轴上分别位于原点两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数。 (2)代数定义:只有符号不同的两个数叫做互为相反数。例如,2和-2 ;0的相反数是0。 2、表示方法以及多重符号的简化 (1)a的相反数是-a,这里a是任意有理数(即正数、负数、0) 当a大于0时,-a小于0(正数的相反数是负数) 当a小于0时,-a大于0(负数的相反数是正数) 当a等于0时,-a等于0(0的相反数是0) (2)多重符号化简方法:正数前有偶数个“—”,可以把“—”一起去掉 ~ 2 / 5 ~ 正数前有奇数个“—”,最后只留一个“—” 0前无论有多少个“—”,化简后仍是0 五、绝对值 1、概念 (1)几何定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离,记作|a|,读作a的绝对值,绝对值不能是负数。 (2)代数定义:正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数。 2、做题时需要慎重考虑0的情况。 六、有理数大小比较 1、具体方法:将各数在同一条数轴上表示出来,那么从左到右的顺序就是从小到大的顺序,即为——负数<0<正数。 2、两个负数,绝对值大的反而小。 3两数大小:同号——同正,绝对值大的数大 同负,绝对值大的反而小 异号——正数大于负数 一数为零——正数>0,负数<0 1.3有理数的加减法 1.3.1有理数的加法 一、法则 1、同号两数相加,取相同的符号,并把绝对值相加; 2、绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; 3、互为相反数的两个数相加得0; 4、一个数同0相加,仍得这个数。 二、运算律 1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a 2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(a+b)+c=(a+c)+b 1.3.2有理数的减法 法则:减去一个数,等于加这个数的相反数。a-b=a+(-b) 注意两变:减法变加法,减数变为它的相反数 1.4 有理数的乘除法 1.4.1有理数的乘法 一、法则 1、两数相乘,同号得正,异号的负,并把绝对值相乘。 2、任何数同0相乘,都得0。 二、推广 1、几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。 2、几个数相乘,有一个因数为0,则乘积为0。 三、运算律 1、乘法交换律:两个数相乘,交换因数的位置,积相等。ab=ba 2、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=(ac)b 3、乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac 四、倒数 1、乘积是1的两个数互为倒数。当a≠0时,与1/a互为倒数;当m≠0,n≠0时n/m与m/n互为倒数 2、注意:0没有倒数,做题时应当注意分母不为0 3、-1的倒数是-1;0~ -1之间的数的倒数比本身小; 小于-1的数的倒数比本身大。 1.4.2 有理数的除法 一、法则 1、除以一个不等0的数,等于乘以这个数的倒数。 2、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0,0不能做除数。 二、化简 1、分数可以理解为分子除以分母,分数线就是除号。 2、0除以任何一个不等于0的数,都得0。 三、混合运算 1、乘除混合运算 (1)如果一个带分数的整数部分和分数部分都能与某分数相乘时约分,则将这个带分数写成整数部分与分数部分的和,再利用分配律运算 (2)运算时应该从左至右,并将除法化成乘法再进行运算。 (3)除法化乘法,算式化连乘,小数化分数,带分数化假分数,负因数的个数确定符号的正负。 2、加减、乘除混合运算 遵循原则:先乘除,后加减;按小括号、中括号、大括号依次计算;灵活运用分配律。 1.5有理数的乘方 1.5.1乘方 一、乘方的意义 1、求n 个相同因数的积的运算,叫做乘方, 乘方的结果叫做幂。在an中,a 叫做底数,n 叫做指数。 2、一个数可以看做是这个数本身的一次方,指数1通常省略不写。 3、因为an就是n个a相乘,所以可以利用乘法运算计算乘方运算。 二、乘方运算的性质 1、负数的奇次幂是负数,负数的偶次幂的正数, 2、正数的任何次幂都是正数,3、0的任何正整数次幂都是0。 三、做有理数的混合运算时,应注意以下运算顺序:1.先乘方,再乘除,最后加减; 2.同级运算,从左到右进行; 3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。 1.5.2科学记数法。 一、概念 把一个大于10的数表示成ax10n的形式(其中a是整数位只有一位的数,n是原数的整数位减1.即1≤|a|<10,n是正整数),这种计数方法叫做科学记数法。 1.5.3近似数 一、概念 四舍五入的近似数,从左边第一个非0的数字起,到精确到的数位止,所有的数都叫做这个数的有效数字。 二、说明 一个数只是接近实际数,但与实际数还有差别,它是一个近似数。 近似数与准确数的接近程度,可以用精确度表示。 本文来源:https://www.wddqw.com/doc/8cab9306fab069dc512201c4.html