山西大学附中高一年级(上)数学学案 编号15 变量间的相关关系(1) 学习目标: (1)通过具体示例考察变量之间的关系,认识现实世界中存在着不能用函数模型描述的变量关系,体会研究变量之间的相关关系的重要性. (2) 在解决统计问题的过程中,体会用样本估计总体的思想,理解统计的作用. 重难点:理解变量间的相关关系. 学习过程: 一.复习回顾: 函数的定义 二.情景设置: 客观事物是相互联系的,过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗? 知识探究:变量之间的相关关系 思考1:考察下列问题中两个变量之间的关系: (1)商品销售收入与广告支出经费; (2)粮食产量与施肥量; (3)人体内的脂肪含量与年龄. 这些问题中两个变量之间的关系是函数关系吗? 思考2:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗? 思考3:上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何? 思考4:相关关系与函数关系的异同点: 小结:对相关关系的理解应当注意以下几点: 其一是相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系.因此,不能把相关关系等同于函数关系. 其二是函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系.然而,学会新词并不能使脚变大,而是涉及到第三个因素——年龄.当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大. 其三是在现实生活中存在着大量的相关关系,如何判断和描述相关关系,统计学发挥着非常重要的作用.变量之间的相关关系带有不确定性,这需要通过收集大量的数据,对数据进行统计分析,发现规律,才能作出科学的判断.(对具有相关关系的两个变量进行统计分析的方法叫回归分析.) 检测:P85;P94.A组1. 1、某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿出生率低,于是他得出了一个结论:天鹅能够带来孩子。你认为这样的结论可靠吗?如何证明这个问题的可靠性? 2、下列变量之间的关系是相关关系的是( ) ① 球的体积与半径的关系; ② 动物大脑容量的百分比与智力水平的关系; ③ 人的年龄与体重之间的关系; ④ 降雨量与农作物产量之间的关系。 本文来源:https://www.wddqw.com/doc/8e1eb44dd35abe23482fb4daa58da0116d171f62.html