分式方程的增根与无解的区别及联系

时间:2022-07-04 16:09:24 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
分式方程的增根与无解的区别

分式方程的增根与无解是分式方程中常见的两个概念,同学们在学习分式方程后,常常会对这两个概念混淆不清,认为分式方程无解和分式方程有增根是同一回事,事实上并非如此.

分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0它是原方程的增根,从而原方程无解.现举例说明如下:

1 解方程

24x3

2

x2x4x2

解:方程两边都乘以(x+2x-2,得2x+2-4x=3x-2.② 解这个方程,得x=2

经检验:当x=2时,原方程无意义,所以x=2是原方程的增根. 所以原方程无解.

【说明】显然,方程①中未知数x的取值范围是x2x-2.而在去分母化为方程②后,此时未知数x的取值范围扩大为全体实数.所以当求得的x值恰好使最简公分母为零时,x的值就是增根.本题中方程②的解是x2,恰好使公分母为零,所以x2是原方程的增根,原方程无解.

2 解方程

x13x

2 x22x

解:去分母后化为x13x22x 整理得0x8

因为此方程无解,所以原分式方程无解.

【说明】此方程化为整式方程后,本身就无解,当然原分式方程肯定就无解了.由此可见,分式方程无解不一定就是产生增根.

精品文档


x3m

=无解,则m=—————— x22x

x3m

解:原方程可化为=

x2x2

32007湖北荆门)若方程

方程两边都乘以x2,得x3=m 解这个方程,得x=3m

因为原方程无解,所以这个解应是原方程的增根.即x=2 所以2=3m,解得m=1 故当m=1时,原方程无解.

【说明】因为同学们目前所学的是能化为一元一次方程的分式方程,而一元一次方程只有一个根,所以如果这个根是原方程的增根,那么原方程无解.但是同学们并不能因此认为有增根的分式方程一定无解,随着以后所学知识的加深,同学们便会明白其中的道理,此处不再举例.

2ax3

4a为何值时,关于x的方程①会产生增根? 2

x2x4x2

解:方程两边都乘以(x+2x-2,得2x2)+ax3x2 整理得(a1x=-10

若原分式方程有增根,则x2或-2是方程②的根. x2或-2代入方程②中,解得,a=-46

【说明】做此类题首先将分式方程转化为整式方程,然后找出使公分母为零的未知数的值即为增根,最后将增根代入转化得到的整式方程中,求出原方程中所含字母的值.

若将此题“会产生增根”改为“无解”,即:

2ax3

a为何值时,关于x的方程①无解? 2

x2x4x2

此时还要考虑转化后的整式方程(a1x=-10本身无解的情况,解法如下: 解:方程两边都乘以(x+2x-2,得2x2)+ax3x2 整理得(a1x=-10

精品文档


若原方程无解,则有两种情形:

1)当a10(即a1)时,方程②为0x=-10,此方程无解,所以原方程无解。 2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解.原方程若有增根,增根为x2或-2,把x2或-2代入方程②中,求出a=-46

综上所述,a1a=一4或a6时,原分式方程无解.

结论:弄清分式方程的增根与无解的区别和联系,能帮助我们提高解分式方程的正确,对判断方程解的情况有一定的指导意义.

精品文档


本文来源:https://www.wddqw.com/doc/a6fb3ba050d380eb6294dd88d0d233d4b04e3f12.html