“数学广角”是人教版六年级下册第五单元的内容。在数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。本节课教材借助把4枝铅笔放进3个文具盒中的操作情境,介绍了一类较简单的“鸽巢问题”,即把n+1个物体任意分放进n个空抽屉里(m>n,n是非0自然数),那么一定有一个抽屉中放进了至少2个物体。关于这类问题,学生在现实生活中已积累了一定的感性经验。教学时可以充分利用学生的生活经验,放手让学生自主思考,先采用自己的方法进行“证明”,然后再进行交流,在交流中引导学生对“枚举法”、“反证法”、“假设法”等方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题,发展学生的抽象思维能力。让学生通过本内容的学习,帮助学生加深理解,学会利用“鸽巢问题”解决简单的实际问题。在此过程中,让学生初步经历“数学证明”的过程。实际上,通过“说理”的方式来理解“抽屉原理”的过程就是一种数学证明的雏形,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。还要注意培养学生的“模型”思想,这个过程是将具体问题“数学化”的过程,能从纷繁的现实素材中找出最本质的数学模型,是体现学生数学思维和能力的重要方面。 “鸽巢问题”是学生从未接触过的新知识,难以理解“鸽巢问题”的真正含义,发现有相当多的学生他们自己提前先学了,在具体分的过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。有时要找到实际问题与“鸽巢问题”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。 1.年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。 2.思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此,教师要耐心细致的引导,重在让学生经历知识的发生、发展和过程,而不是生搬硬套,只求结论,要让学生不知其然,更要知其所以然。 本文来源:https://www.wddqw.com/doc/be48674226c52cc58bd63186bceb19e8b8f6ec30.html