常见数列公式及运算 Sn11、数列的前n项和S的关系,a1n与annSnSn1n2 2、等差数列(1)通项公式:ana1(n1)d anam(nm)d (2)性质: m+n=p+q amanapaq (m, n, p, q ∈N ) (3)前n项和公式(1)Sn(a1an)n(n2 (2)Sn1)dnna12 3、等比数列(1)通项公式: a1nmna1qn,anamq(a1q0) (2)性质:若m+n=p+q,amanapaq na(q1)(3)前n项和公式:S1nna1(1q)a1anq 1q1q(q1)一、求通项:(1)已知数列an满足a112,a1n1ann2n,求an。 (2)已知数列a2nn满足a13,an1n1an,求an。 (3)已知a3n113,an13n2an (n1),求an。 (4)已知数列an中,a11,an12an3,求an. (5)已知数列an满足a11,an12an1(nN*).求数列an的通项公式;二、求和:(1)错位相减法求和:Sn13x5x27x3(2n1)xn1 x0解:当x1时,S2n1357(2n1)n 当x1时, xS234nn1x3x5x7x(2n1)x ② ①-②得 (1x)Sn12x2x22x32x42xn1(2n1)xn 再利用等比数列的求和公式得:(1x)S1xn1n12x1x(2n1)xn (2n1)xn1 ∴ S(2n1)xn(1x)n(1x)2 n2x1 ∴ Sn1n(2n1)x(2n1)xn(1x)(1x)2x1 1 ① 2462nn2,2,3,,n,前n项的和. 答案:Sn4n1 22222111(2)分组法求和:求和 11,4,27,,n13n2,… aaa111解:设Sn(11)(4)(27)(n13n2) aaa111Sn(12n1)(1473n2) aaa(3n1)n(3n1)n当a=1时,Snn= 2211n(3n1)naa1n(3n1)na当a1时,Sn= 1a1221a练:求数列(3)裂项法求和:公式 ① 1111111 ② n(nk)knn1n(n1)nn11111 2n1(2n1)22n12n1③ 例:在数列{an}中,an解: ∵ an212n,又bn,求数列{bn}的前n项的和. anan1n1n1n112nn211 ∴ bn8() nn1n1n1n12nn122∴ 数列{bn}的前n项和 1111223318n =8(1 ) = n1n1求数列 Sn8[(1)()()(1411)] nn1112,1231,,1nn1,的前n项和. 解:设annn11n1n 1nn1则 Sn12312=(21)(32)(n1n) =n11. 2 本文来源:https://www.wddqw.com/doc/e14ed20369eae009581bec82.html