龙源期刊网 http://www.qikan.com.cn 数形结合妙用公式 作者:刘华志 来源:《中学教学参考·理科版》2013年第05期 数形结合思想是一种重要的数学思想,简而言之就是把数学中“数”和“形”结合起来解决数学问题的一种数学思想,通过“数”与“形”之间的对应和转换来解决数学问题.著名数学家华罗庚指出:“数缺形时少直观,形少数时难入微.”这句话说明了“数”和“形”是紧密联系的.数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质. 纵观近年来的中考,融“数”和“形”于一体的试题屡见不鲜,可见数形结合思想的重要性.因此,运用数形结合的方法,帮助学生类比、发掘、剖析其所具有的几何模型,这对于帮助学生深化思维、扩展知识、提高能力都大有裨益.下面,笔者通过完全平方公式与平方差公式,来说明数形结合思想的巧妙运用. 一、完全平方公式的运用 完全平方公式:(a+b)2=a2+2ab+b2与(a-b)2=a-2ab+b,是代数中的重要公式之一,主要用于多项式的计算与化简.运用数形结合的思想,结合完全平方公式可以巧妙地解决一些与几何有关的问题. 1.用来计算直角三角形的边与面积 本文来源:https://www.wddqw.com/doc/fe324385e55c3b3567ec102de2bd960591c6d97c.html