[小学奥数中的数论问题]小学奥数数论问题完全平方数练习题【三篇】

副标题:小学奥数数论问题完全平方数练习题【三篇】

时间:2024-03-23 03:12:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【#小学奥数# 导语】天高鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩用好分秒时间,积累点滴知识,解决疑难问题,学会举一反三。以下是®文档大全网为大家整理的《小学奥数数论问题完全平方数练习题【三篇】》 供您查阅。

【第一篇】

一个自然数减去45及加上44都仍是完全平方数,求此数。
  解答:设此自然数为x,依题意可得

  x-45=m^2; (1)

  x+44=n^2 (2)

  (m,n为自然数)

  (2)-(1)可得 :

  n^2-m^2=89或: (n-m)(n+m)=89

  因为n+m>n-m

  又因为89为质数,

  所以:n+m=89; n-m=1

  解之,得n=45。代入(2)得。故所求的自然数是1981。

【第二篇】

求证:四个连续的整数的积加上1,等于一个奇数的平方
  解答:设四个连续的整数为,其中n为整数。欲证

  是一奇数的平方,只需将它通过因式分解而变成一个奇数的平方即可。

  证明 设这四个整数之积加上1为m,则

  m为平方数

  而n(n+1)是两个连续整数的积,所以是偶数;又因为2n+1是奇数,因而n(n+1)+2n+1是奇数。这就证明了m是一个奇数的平方。

【第三篇】

求证:11,111,1111,这串数中没有完全平方数
  解答:形如的数若是完全平方数,必是末位为1或9的数的平方,即

  或在两端同时减去1之后即可推出矛盾。

  证明 若,则

  因为左端为奇数,右端为偶数,所以左右两端不相等。

  若,则

  因为左端为奇数,右端为偶数,所以左右两端不相等。

  综上所述,不可能是完全平方数。

小学奥数数论问题完全平方数练习题【三篇】.doc

本文来源:https://www.wddqw.com/pn2X.html