高二数学知识点复习笔记必修二

时间:2023-08-12 06:37:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
【#高二# 导语】数学语文这一学科其实也差不多,数学也有很多知识点是要背的。©文档大全网为各位同学整理了《高二数学知识点复习笔记必修二》,希望对你的学习有所帮助!
1 (6).jpg

1.高二数学知识点复习笔记必修二 篇一


  1.向量可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。

  2.规定若线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。具有方向和长度的线段叫做有向线段。

  3.向量的模:向量的大小,也就是向量的长度(或称模)。向量a的模记作|a|。

  注:向量的模是非负实数,是可以比较大小的。因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。

  4.单位向量:长度为一个单位(即模为1)的向量,叫做单位向量.与向量a同向,且长度为单位1的向量,叫做a方向上的单位向量,记作a0。

  5.长度为0的向量叫做零向量,记作0。零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。

2.高二数学知识点复习笔记必修二 篇二


  棱锥

  棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

  棱锥的的性质:

  (1)侧棱交于一点。侧面都是三角形

  (2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

  正棱锥

  正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

  正棱锥的性质:

  (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

  (2)多个特殊的直角三角形

  esp:

  a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

  b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

3.高二数学知识点复习笔记必修二 篇三


  直线与平面有几种位置关系

  直线与平面的关系有3种:直线在平面上,直线与平面相交,直线与平面平行。其中直线与平面相交,又分为直线与平面斜交和直线与平面垂直两个子类。

  直线在平面内——有无数个公共点;直线与平面相交——有且只有一个公共点;直线与平面平行——没有公共点。直线与平面相交和平行统称为直线在平面外。

  直线与平面垂直的判定:如果直线L与平面α内的任意一直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。

  线面平行:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。

  直线与平面的夹角范围

  [0,90°]或者说是[0,π/2]这个范围。

  当两条直线非垂直的相交的时候,形成了4个角,这4个角分成两组对顶角。两个锐角,两个钝角。按照规定,选择锐角的那一对对顶角作为直线和直线的夹角。

  直线的方向向量m=(2,0,1),平面的法向量为n=(-1,1,2),m,n夹角为θ,cosθ=(m_n)/|m||n|,结果等于0.也就是说,l和平面法向量垂直,那么l平行于平面。l和平面夹角就为0°

4.高二数学知识点复习笔记必修二 篇四


  空间中的垂直问题

  (1)线线、面面、线面垂直的定义

  两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.

  线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.

  平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.

  (2)垂直关系的判定和性质定理

  线面垂直判定定理和性质定理

  判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.

  性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.

  面面垂直的判定定理和性质定理

  判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.

  性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.

5.高二数学知识点复习笔记必修二 篇五


  空间中的平行问题

  (1)直线与平面平行的判定及其性质

  线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.

  线线平行线面平行

  线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

  那么这条直线和交线平行.线面平行线线平行

  (2)平面与平面平行的判定及其性质

  两个平面平行的判定定理

  (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

  (线面平行→面面平行),

  (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.

  (线线平行→面面平行),

  (3)垂直于同一条直线的两个平面平行,

  两个平面平行的性质定理

  (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)

  (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)

本文来源:https://www.wddqw.com/ySvv.html