北师大版初二一次函数测试题,初二奥数一次函数测试题及答案

副标题:初二奥数一次函数测试题及答案

时间:2024-06-01 14:55:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【#初中奥数# 导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。奥数对青少年的脑力锻炼有着一定的作用,可以通过奥数对思维和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用,通常比普通数学要深奥一些。下面是®文档大全网为大家带来的初二奥数一次函数测试题及答案,欢迎大家阅读。

  一.选择题(每小题3分,共30分)
  1.函数y= 中,自变量x的取值范围是( )
  A.x>2 B.x<2 C.x≠2 D.x≠-2
  2.关于函数y=-2x+1,下列结论正确的是( )
  A.图形必经过点(-2,1) B.图形经过第一、二、三象限
  C.当x> 时,y<0 D.y随x的增大而增大
  3.如图,一次函数y=kx+b(k≠0) 的图象经过A,B两点,则关于x的不等式kx+b<0的解集是( )
  A.m>-1 B.m<1
  C.-1<m<1 D.-1≤m≤1
  4.直线y=-2x+m与直线y=2x-1的焦点在第四象限,则 m的取值范围是( )
  A.m>-1 B.m<1 C.-1<m<1 D.-1≤m≤1
  5.若一次函数y=(1-2m)x+m的图象经过点A( , )和点B( , ),当 < 时, < ,且与y轴相交于正半轴,则 m的取值范围是( )
  A.m>0 B.m< C.0<m< D. .m>
  6.若函数y= 则当函数值y=8时,自变量x的值是( )
  A. B.4
  C. 或4 D.4或-
  7.一艘轮船在同一航线上往返于甲、乙两地 ,已知轮船在静水中的速度为15㎞/h,水流速度为5 ㎞/h,轮船先从甲地顺水航行到乙地在乙地停留一段时间后,又从乙地逆水航行返回甲地,设轮船从甲地出发所用时间为 t(h),航行的路程s(㎞),则s与t 的函数图象大致是( )
  8.一次函数y=kx+b的图象如图所示,当x<1时,y的取值范围是( )
  A.-2<y<0 B. -4<y<0 C. y<-2 D. y<-4
  9.将直线y=-2x向右平移2个单位所得直线的解析式为( )
  A.y=-2x+2 B.y=-2(x+2) C.y=-2x-2 D.y=-2(x-2)
  10.如图,小亮在操场上玩,一段时间内沿M→A→B→M的路径匀速散步,能近似刻画小亮到出发点M的距离y与x之间关系的函数图象是( )
  二. 填空题(每小题3分,共24分)
  11.将直线y=-2x+3向下平移2个单位得到的直线为 。
  12.在一次函数y=(2-k)x+1中,y 随x的增大而增大,则 可 的取值范围是 。
  13.从地面到高空11千米之间,气温随高度的升高而下降,每升高1千米,气温下降6℃.已知某处地面气温为23℃,设该处离地面 x千米(0<x<11)从的温度为y℃,则y与x的函数关系式为 。
  14.直线 y=kx+b与直线y=-2x+1平行,且经过点(-2,3),则kb= .
  15.直线y=-x与直线y=x+2与 x轴围成的三角形的面积为 。
  16.一次函数y= x+4分别交x轴、y轴于A,B两点,在x轴上取一点C,使△ABC为等腰三角形,则这样的点C最多有 个。
  17.如图,OB,AB分别表示甲乙两名同*动的一次函数图象,图中s与t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:
  ①射线AB表示甲的路程与时间的函数关系;
  ②甲的速度比乙快1.5米/ 秒;
  ③甲比乙先跑12米;
  ④8秒钟后,甲超过了乙,
  其中正确的有 。(填写你认为所有正确的答案序号)
  18.绍兴黄酒是中国名酒之一,某黄酒厂的瓶酒车间先将散装黄酒灌装成瓶装黄酒,再将瓶装黄酒装箱出车间,该车间有灌装,装箱生产线共26条,每条灌装、装箱生产线的生产流量分别如图①、②所示。某日8:00~11:00,该车间内的生产线全部投入生产,图③表示该时段内未装箱的瓶装黄酒存量变化情况,则灌装生产线有 条。
  三.解答题(共66分)
  19.(7分)已知:一次函数y=(2a+4)x-(3-b),当a,b为何值时:
  (1) y随x的增大而增大;
  (2)图象经过第二、三象限;
  (3)图象与 与 y 轴的交点在x轴上方。
  20.(8分)画出函数y=- x+3的图象,根据图象回答下列问题:
  (1)求方程- x+3=0的解;
  (2)求不等式- x+3<0的解集;
  (3)当x取何值时,y≥0.
  21.(8分)某市出租车计费方法如图所示,x(㎞)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:
  (1)出租车的起步价是多少元?当 x>3时,求y关于x的函数关系式;
  (2)若某程控有一次乘出租车的车费为32元,求这位乘客乘车的里程。
  22.(10分)一列长120米的火车匀速行驶,经过一条长为160米的隧道,从车头驶入隧道入口到车尾离开隧道出口共用14秒,设车头在驶入隧道入口x秒时,火车在隧道内的长度为y米。
  (1)求火车行驶的速度;
  (2)当0≤x≤14时,y与x的函数关系式;
  (3)在给出的平面直角坐标系中画出y与x的函数图像。
  23.(10分)某地为改善生态环境,积极开展植树造林,甲乙两人从近几年的统计数据中有如下发现:
  乙:
  甲:
  (1) 求 与x之间的函数关系式?
  (2) 若上述关系不变,试计算哪一年该地公益林面积可达防护林面积的2倍?这时该公益林的面积为多少万亩?
  24.(11分)某地区为了进一步缓解交通拥堵问题,决定修建一条长尾6千米的公路。如果平均每天的修建费y(万元与修建天数x(天)之间在30≤x≤120时,具有一次函数关系,如下表所示:
  x 50 60 90 120
  y 40 33 32 26
  (1)求y关于x的函数解析式;
  (2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费。
  25.(12分)如图所示,已知直线y=x+3的图象与 x轴、y轴交于A,B两点,直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分,求直线l的解析式。
  参考答案:
  一,选择题:
  题号 1 2 3 4 5 6 7 8 9 10
  答案 C C B C C D C C D C
  二.填空题:
  11.y=-2x+1
  12.k<2
  13.y=-6x+23
  14.2 15.1 16.4 17.②③④ 18.14 19.(1)a>-2 (2)a<-2且b<3
  20.解:图象略。
  (1)由图可知,x=2
  (2)x>2
  (3)x≤2
  21.解:(1)8元,y=2x+2
  (2)当 y=32时,2x+2=32,x=15,∴这位乘客乘车的里程为15㎞
  22.解:(1)设火车行驶的速度为v 米/秒,根据题意得14v=120+60,解得v=20
  (2)①当0≤x≤6时,y=20x;②当6<x≤8时y=120;③ 当8<x≤14时,y=120-20(x-8)=-20+280
  (3)图略
  23.解:(1) =15x-25950(x≥2010)
  (2) = ,即5x-1250=2(15x-2590),x=2026,故 =5×2026-1250=8880,
  ∴到2026年该地公益林面积可达防护林面积的2倍,公益林面积为8880万亩。
  24.解:(1)y=-0.2x+50(30≤x≤120)
  (2)设原计划要m天完成,则增加2㎞后,用了(m+15)天,由题意得 = ,解这个方程得m=45,∴原计划每天的修建费为:-0.2×45+50=41(万元)
  25.解:∵直线y=x+3的图象与x、y轴交于A,B两点,
  ∴A点的坐标为(-3,0),B点坐标为(0,3)
  ∴∣OA∣=3,∣OB∣=3
  ∴ = ∣OA∣×∣OB∣= ×3×3=
  设直线l的解析式为y=kx(k≠0),
  ∵直线l把△AOB的面积分为2:1的两部分与线段AB交于点C
  ∴分两种情况讨论:
  ① 当 : =2:1时,设C点坐标为( , ),
  又∵ = + =
  ∴ = × =3,即 = ∣OA∣×∣ ∣= ×3×∣ ∣=3
  ∴ = 2,由图可知 =2
  又∵点C在直线AB上
  ∴2= +3,∴ =-1.
  ∴C点坐标为(-1,2)。把C点坐标代入 y=kx中,得2=-1×k,
  ∴k=-2
  ∴直线l的解析式为y=-2x
  ② 当 : =1:2时, 设C点坐标为( , )
  又∵ = + =
  ∴ = × = ,即 = ∣OA∣×∣ ∣= ×3×∣ ∣=
  ∴ =±1,由图可知 =1,
  又∵点C在直线AB上
  ∴1= +3
  ∴ =-2,把C点坐标代入 y=kx中,,1=-2k
  ∴k=-
  ∴直线l的解析式为y=- x
  综合①②得,直线l的解析式为y=- x或y=-2x

初二奥数一次函数测试题及答案.doc

本文来源:https://www.wddqw.com/Ht45.html