指数对数计算题含答案

时间:2023-12-30 07:44:19 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
指数对数计算题含答案



1.(1) $log_5 32 - log_2 32 + log_8 5 = log_5 \frac{32}{2^5} \cdot \frac{1}{8} = log_5 1 = 1$(2) $3^3 - 3^2 \cdot 3^8 + 0.008 \cdot 8925^2 = 27 - 3^{10} + 63.06 = -3$

2.(1) $log_2 7 + log_2 7 + log_2 7 + log_2 2^2 + log_2 2^3 - log_2 9.8 = log_2 \frac{7^3 \cdot 2^5}{9.8} = 3 - log_2 9.8$(2) $2 \cdot log_2 2 + log_2 5 + (log_2 2)^2 - log_2 2 + 1 = 2 + log_2 5 + 1 = 3$

3.(1) $41 - \frac{181}{22} - 2 \cdot 2 - \frac{3}{2} = -\frac{105}{22}$(2) $2 \cdot (log_2 2) + log_2 (2 \cdot 5) + log_2 2 - log_2 2 + 1 = 3$

4.(1) $log_3 27 + log_2 5 + log_2 4 + 7 = 3 + log_2 25 + log_2 4 + 7 = 13$(2) $6 - (\pi - 1) - 3^3 + \frac{1}{3} = 16$

5.(1) $\frac{1}{3} \cdot log_2 \frac{272}{2^5} \cdot \frac{1}{8} = \frac{1}{3} \cdot log_2 1 = 1$(2) $log_2 \frac{2^2}{32} + log_2 \frac{8}{5^5} = log_2 \frac{1}{20} = -4$

6.(1) $lg5(lg8 + lg1000) + (lg23)^2 + lg6 + lg0.06 = lg5(3 + 6) + 2 + lg6 - 1 = 2$(2) $(ab)^{ab} = a^{ab} \cdot b^{ab} = a^{12} \cdot b^{10}$


7.(1) $log_{10} \frac{1}{25} + log_{10} \frac{4}{3} + log_{10} \frac{1}{1000} - 3 = -4$(2) $\frac{3a^5 \cdot 3a^7}{a^6} = 9a^{12}$

8.$2log_3 2 - log_3 32 + log_3 2 - 5log_5 3 = 2 + \frac{5}{2} - \frac{5}{2} = -1$

9.(1) $3(-64) - 1 + 0.252 \cdot 16 = -193.688$(2) $log_2 25 + log_2 100 - \frac{1}{3} - 2 + 1 + log_2 2 = 5 + 6 - \frac{1}{3} - 1 = 9\frac{2}{3}$

11.lg12.5 - lg5/8 + lg1/2的值。

答案:lg12.5 - lg5/8 + lg1/2 = 1.

12.计算下列各式的值:

1) 111/(.0081) - 1/4 - [3*(7-1-.25)/(3-3/8)]*[81+(38)] - 10*.0273

2) 2(lg2)^2 + lg2*lg5 + (lg2)^2 - lg2 + 1.

答案:(1) -4

2) 2(lg2)^2 + lg2*lg5 + (lg2)^2 - lg2 + 1 = 2*1 + 1*0 + 1 - 1 + 1 = 4.


本文来源:https://www.wddqw.com/doc/22124b1f7cd5360cba1aa8114431b90d6d858973.html