对数的运算 1.对数的运算性质 如果a>0,且a≠1,M>0,N>0那么: M(1)loga(M·N)= ,(2)loga= , Nn(3)logaM= (n∈R). 2.换底公式 logab= a>0,且a≠1;c>0,且c≠1;b>0). 1.判断(正确的打“√”,错误的打“×”) MlogaM(1)loga=.( ) NlogaN(2)log1(-2)2=2log1(-2).( ) 33(3)积、商的对数可以化为对数的和、差.( ) 12.已知a>0且a≠1,则loga2+loga=( ) 21A.0 B. 2C.1 D.2 3.计算log510-log52等于( ) A.log58 B.lg 5 C.1 D.2 4.(1)lg 10=__________; e(2)已知ln a=0.2,则ln=__________. alog295.=__________. log23 探究点一 对数运算性质的应用 计算下列各式: 3(1)log5625; (2)log2(32×42); 79(3)log535-2log5+log57-log5; 352(4)lg 25+lg 8+lg 5·lg 20+(lg 2)2. 3 1.计算下列各式的值: 5(1)lg100; (2)log345-log35; (3)(lg 5)2+2lg 2-(lg 2)2; 23lg 3+lg 9+lg27-lg355(4). lg 81-lg 27 (1)计算:(log43+log83)log32=__________. (2)已知log189=a,18b=5,求log3645.(用a,b表示) 2.(1)log89log的值是( ) 23 A.23 B.32 C.1 D.2 (2)计算:log52·log79log13. 53·log74 1.化简12log612-2log62的结果为( ) A.62 B.122 C.log63 D.12 2.若ab>0,给出下列四个等式: ①lg(ab)=lg a+lg b; ②lgab=lg a-lg b;③12lgab2=lga1b; ④lg(ab)=logab10. 其中一定成立的等式的序号是( ) A.①②③④ B.①② C.③④ D.③ 3.方程log3(x2-10)=1+log3x的解是________. 4.2log510+log50.25=( ) A.0 B.1 C.2 D.4 2.下列各等式正确的为( ) A.logg C.logx23·log25=lo2(3×5) B.lg 3+lg 4=lg(3+4) 2y=log2x-log2y n∈N*) 3.若lg x-lg y=t,则lgx23-lgy23=( ) A.3t B.32t C.t D.t2 4.2log3232-log39+log38的值为( ) A.12 B.2 C.3 D.13 5.若log153·log36·log6x=2,则x等于( ) A.9 B.119 C.25 D.25 6.计算loglog2927+24=________. 7.已知m>0,且10x=lg(10m)+lg1m,则x=__________. 8.若lg x+lg y=2lg(x-2y),则xy=__________. 9.计算下列各式的值: (1)logg1535+2lo12-log5-log250514; (2)[(1-log63)2+log62·log618]÷log64; (3)(log43+log83)(log32+log92). D.lg nm=1nlg m(m>0,n>1, 本文来源:https://www.wddqw.com/doc/b4ececd3cc2f0066f5335a8102d276a2002960ab.html