高一数学集合知识点归纳和习题 1.集合的有关概念。 1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 ②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。 ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:N,Z,Q,R,N* 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对x∈A都有x∈B,则AB(或AB); 2)真子集:AB且存在x0∈B但x0A;记为AB(或,且) 3)交集:A∩B={x|x∈A且x∈B} 4)并集:A∪B={x|x∈A或x∈B} 5)补集:CUA={x|xA但x∈U} 注意:①?A,若A≠?,则?A; ②若,,则; ③若且,则A=B(等集) 3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。 4.有关子集的几个等价关系 ①A∩B=AAB;②A∪B=BAB;③ABCuACuB; ④A∩CuB=空集CuAB;⑤CuA∪B=IAB。 5.交、并集运算的性质 ①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A; ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB; 6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。 本文来源:https://www.wddqw.com/doc/56a00cc274c66137ee06eff9aef8941ea66e4b70.html