一、因数和倍数 1、整除:被除数、除数和商都是自然数,并且没有余数。 整数与自然数的关系:整数包括自然数。 2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。 例:12是6的倍数,6是12的因数。 (1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。 (2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。 一个数的因数的求法:成对地按顺序找。 (3)一个数的倍数的个数是无限的,最小的倍数是它本身。 一个数的倍数的求法:依次乘以自然数。 (4)2、3、5的倍数特征 1) 个位上是0,2,4,6,8的数都是2的倍数。 2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。 ..3)个位上是0或5的数,是5的倍数。 4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。 同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。 5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。 3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。 如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等 4:自然数按能不能被2整除来分:奇数、偶数。 奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。 偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。 最小的奇数是1,最小的偶数是0. 关系: 奇数+、- 偶数=奇数 奇数+、- 奇数=偶数 偶数+、-偶数=偶数。 5、自然数按因数的个数来分:质数、合数、1、0四类. 质数(或素数):只有1和它本身两个因数。 合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。 1: 只有1个因数。“1”既不是质数,也不是合数。 0: 最小的质数是2,最小的合数是4,连续的两个质数是2、3。 每个合数都可以由几个质数相乘得到,质数相乘一定得合数。 20以内的质数:有8个(2、3、5、7、11、13、17、19) 100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、 43、47、53、59、61、67、71、73、79、83、89、97 100以内找质数、合数的技巧: 看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。 : 奇数×奇数=奇数 质数×质数=合数 6、最大、最小 A的最小因数是:1; 最小的奇数是:1; A的最大因数是:A; 最小的偶数是:0; A的最小倍数是:A; 最小的质数是:2; 最小的自然数是:0; 最小的合数是:4; 7、分解质因数:把一个合数分解成多个质数相乘的形式。 用短除法分解质因数 (一个合数写成几个质数相乘的形式)。 ...比如:30分解质因数是:(30=2×3×5) 8、互质数:公因数只有1的两个数,叫做互质数。 两个质数的互质数:5和7 两个合数的互质数:8和9 一质一合的互质数:7和8 两数互质的特殊情况: ⑴1和任何自然数互质;⑵相邻两个自然数互质; ⑶两个质数一定互质; ⑷2和所有奇数互质; ⑸质数与比它小的合数互质; 9、公因数、最大公因数 几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。 用短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来) 几个数的公因数只有1,就说这几个数互质。 如果两数是倍数关系时,那么较小的数就是它们的最大公因数。 如果两数互质时,那么1就是它们的最大公因数。 10、公倍数、最小公倍数 几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。 用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来) 用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来) 如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。 如果两数互质时,那么它们的积就是它们的最小公倍数。 11、求最大公因数和最小公倍数方法 用12和16来举例 1、 求法一:(列举求同法) 最大公因数的求法: 12的因数有:1、12、2、6、3、4 16的因数有:1、16、2、8、4 最大公因数是4 最小公倍数的求法: 12的倍数有:12、24、36、48、… 16的倍数有:16、32、48、… 最小公倍数是48 2、求法二:(分解质因数法) 12=2×2×3 16=2×2×2×2 最大公因数是:2×2=4 (相同乘一次) 最小公倍数是:2×2 × 3×2×2= 48 (相同乘一次× 不同分别乘) 本文来源:https://www.wddqw.com/doc/57c4afe8a01614791711cc7931b765ce04087aa5.html