1.1 正数和负数 以前学过的0以外的数前面加上负号“-”的书叫做负数。以前学过的0以外的数叫做正数。 数0既不是正数也不是负数,0是正数与负数的分界。 在同一个问题中,分别用正数和负数表示的量具有相反的意义 1.2 有理数 1.2.1 有理数——正整数、0、负整数统称整数,正分数和负分数统称分数。整数和分数统称有理数。 1.2.2 数轴 规定了原点、正方向、单位长度的直线叫做数轴。数轴的作用:所有的有理数都可以用数轴上的点来表达。 注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。⑵同一根数轴,单位长度不能改变。 一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。 1.2.3 相反数 只有符号不同的两个数叫做互为相反数。数轴上表示相反数的两个点关于原点对称。 在任意一个数前面添上“-”号,新的数就表示原数的相反数。 1.2.4 绝对值 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。 一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。 在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。 比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。⑵两个负数,绝对值大的反而小。 1.3 有理数的加减法 1.3.1有理数的加法 有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。 ⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。⑶一个数同0相加,仍得这个数。 两个数相加,交换加数的位置,和不变。加法交换律:a+b=b+a 三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。加法结合律:(a+b)+c=a+(b+c) 1.3.2有理数的减法 有理数的减法可以转化为加法来进行。 有理数减法法则:减去一个数,等于加这个数的相反数。a-b=a+(-b) 1.4 有理数的乘除法 1.4.1 有理数的乘法 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数同0相乘,都得0。乘积是1的两个数互为倒数。 几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。 两个数相乘,交换因数的位置,积相等。ab=ba 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=a(bc) 一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac 数字与字母相乘的书写规范: ⑴数字与字母相乘,乘号要省略,或用“”⑵数字与字母相乘,当系数是1或-1时,1要省略不写。 ⑶带分数与字母相乘,带分数应当化成假分数。 用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。 一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即ax+bx=(a+b)x 上式中x是字母因数,a与b分别是ax与bx这两项的系数。 去括号法则: 括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。 括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。 括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。 1.4.2 有理数的除法 有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。a÷b=a?(b≠0) 两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。 1.5 有理数的乘方 1.5.1 乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。 负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。 有理数混合运算的运算顺序: ⑴先乘方,再乘除,最后加减;⑵同级运算,从左到右进行;⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行 1.5.2 科学记数法 把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。 用科学记数法表示一个n位整数,其中10的指数是n-1。 1.5.3 近似数和有效数字 接近实际数目,但与实际数目还有差别的数叫做近似数。精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。 从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。 对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。 本文来源:https://www.wddqw.com/doc/62a4365ce65c3b3567ec102de2bd960590c6d9b3.html