沪教版数学七年级(下)第十三章相交线平行线知识点汇总 第十三章相交线、平行线 13.1 邻补角,对顶角 1、 相交线的定义:在同一平面内,如果两条直线只有一个公共点,那么这两条直线叫做相交线。 2、 对顶角 (1)对顶角的定义:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。 (2)对顶角的性质:对顶角相等。 3、 邻补角 (1)邻补角的定义:有公共顶点和一条公共边,并且互补的两个角称为邻补角。 (2)邻补角的性质:邻补角互补。 19 2021222313.2 垂线 1、 垂线的定义:垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 2、 垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:联结直线外一点与直线上各点得所有线段中,垂线段最短。 3、 点到直线的距离: 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 13.3 同位角、内错角、同旁内角(三线八角) 1、 同位角:两个角都在两条被截线同侧,并在截线的同旁,这样的一对角叫做同位角。 2、 内错角:两个角都在两条被截线之间,并且在截线的两旁,这样的一对角叫做内错角。 3、 同旁内角:两个角都在两条被截线之间,并且在截线的同旁,这样的一对角叫做同旁内角。 21222313.4 平行线的判定 1、 在同一平面内,不相交的两条直线叫做平行线。 2、 平行公理:经过直线外一点,有且只有一条直线与已知直线平行。 1 / 2 沪教版数学七年级(下)第十三章相交线平行线知识点汇总 3、 平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也平行,被称为平行的传递性。 4、 平行线的判定: (1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。 (同位角相等,两直线平行) (2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。 (内错角相等,两直线平行) (3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。 (同旁内角互补,两直线平行) 13.5 平行线的性质 1、 两条直线被第经过直线外地一点,有且只有一条直线与已知直线平行。 2、 两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等) 3、 两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等) 4、 两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补) 5、 两条平行线中,任意一条直线上的所有点到另一条直线的距离都是一个定值,这个定值叫做这两条平行线间的距离。 2 / 2 本文来源:https://www.wddqw.com/doc/72fd7f5802f69e3143323968011ca300a7c3f675.html