什么叫互质数? 定义及定理: 【对于两个数来看 】 公因数只有1的两个数,叫做互质数。 【对于多个数来看(教材定义)】 若干个最大公因数只有1的正整数,叫做互质数。 表达及运用注意 (1)这里所说的两个数是指除0外的所有自然数。 (2)公因数只有 1,不能误说成没有公因数。 (3)三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的。如6、8、9。 两个正整数(n),除了1以外,没有其他公约数时,称这两个数为互质数.互质数的概率是6/π^2 判定互质数的方法汇总 直接分辨 (1)两个不相同质数一定是互质数。例如,2与7、13与19。 (2)相邻的两个自然数是互质数。例如 15与 16。 (3)相邻的两个奇数是互质数。例如 49与 51。 (4)大数是质数的两个数是互质数。例如97与88。 (5)小数是质数,大数不是小数的倍数的两个数是互质数。例如 7和 16。 (6)2和任何奇数是互质数。例如2和87。 (7)1和任何自然数(0除外)都是互质数。 计算判定法 (1)两个数都是合数(两数相差较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。 如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。 (2)两个数都是合数(两数相差较小),这两个数的差的所有质因数都不是小数的约数,这两个数是互质数。如85和78。 85-78=7,7不是78的约数,这两个数是互质数。 (3)两个数都是合数,大数除以小数的余数(不为0且大于 1)的所有质因数,都不是小数的约数,这两个数是互质数。如 462与 221 462÷221=2&&20, 20=2×2×5。 2、5都不是221的约数,这两个数是互质数。 (4)减除法。如255与182。 255-182=73,观察知 73<182。 182-(73×2)=36,显然 36<73。 73-(36×2)=1, (255,182)=1。 所以这两个数是互质数。 本文来源:https://www.wddqw.com/doc/a0d65c9f66ce0508763231126edb6f1aff007186.html