d = C÷π 圆柱和圆锥有关知识点 半径=圆的周长÷π÷2 r = C÷π÷2 一、圆锥和圆锥各部分的名称以及特征 1、圆柱 圆的面积=半径的平方×π =(直径÷2)2×π =(圆的周长÷π÷2)2×π S=πr2 =(d÷2)2×π =(C÷π÷2)2×π 2、( 1 )圆柱的侧面积:把圆柱侧面沿高展开,得到一个长方形(或正方形),长方形 的长是圆柱的底面周长,长方形的宽是圆柱的高。 圆柱的侧面积=底面周长×高 =直径×π×高 =半径×2×π×高 S 侧=C h=πd h=2πr h (1)认识圆柱各部分的名称: 上下两个圆面叫做底面, 圆柱的周围叫侧面, 圆柱两个底面之间的距离叫做高。 (2)圆柱的特征: 圆柱的上下底面是两个圆,它们是完全相同的;圆柱的侧面是曲面;圆柱的高有无数条,高的长度都相等。 (3)沿高剪开:圆柱的侧面展开后是长方形(当圆柱底面周长与高相等时,展开后是正方形)。 这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。 2. 圆锥 (1)认识圆锥各部分的名称: 下面一个圆面叫做底面,它周围叫侧面,从圆锥的顶点到底面圆心的距离叫做高。 (2)圆锥的特征 圆锥的底面都是一个圆。圆锥的侧面是曲面。一个圆锥只有一条高。 (3)圆锥的侧面沿着一条母线展开后是一个扇 形,这个扇形的弧长等于圆锥的底面周长,半径等于圆锥的母线长。(如下图所示) 逆推公式有: 圆柱的高=圆柱的侧面积÷底面周长 =圆柱的侧面积÷(π×高) =圆柱的侧面积÷(半径×2×π) h=S 侧÷C 圆柱的底面周长=圆柱的侧面积÷高 C =S 侧÷h (2)圆柱的表面积 =圆柱的侧面积+圆柱的底面积×2 S表=S 侧+2S底 (3) 圆柱的体积=底面积×高 V柱=S h=πr2 h 逆推公式有: 圆柱的高=圆柱的体积÷底面积 h=V柱÷S 圆柱的底面积=圆柱的体积÷高 h=V柱÷S 3 ( 1 )如果圆柱的侧面展开是一个正方形, 那么这个圆柱的高和底面周长相等。 ( 2 )半个圆柱的表面积 二、基本公式 1、圆的知识 圆的周长=直径×π=半径×2×π C=πd =2πr 逆推公式有: 直径=圆的周长÷π = 侧面积÷2 +一个底面积+直径×高 1 (3) 圆柱的表面积 4=侧面积÷4+半个底面积+直径×高 14、圆锥的体积=底面积×高× 31V锥=Sh 3②注水问题:上升的(或下降)的水的体积等于放入的的物体的体积。(完全 浸没) 12.一个圆柱的侧面展开图是一个正方形, 说明底面周长和高的比是1∶1, 半径和高的比是1∶2π, 直径和高的比是1∶π 13、当侧面积一定时,越是细、长的圆柱体积越小,越是粗、矮的圆柱体积越大。 3、用一块长6.28厘米、宽3.14厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。这样做成的铁桶的容积最大是多少? 4、将一块长方形铁皮,利用图中阴影的部分,刚好制成一个油桶,求这个油桶的体积。 5、将一块长10cm、宽6cm、高8cm的长方体木块,切割成体积尽可能大的圆柱体木块,求这个圆柱体木块的体积。 逆推公式有: 圆锥的高=圆锥的体积×3÷底面积 h=V锥×3÷S 圆锥的底面积=圆锥的体积×3÷高 S= V锥×3 ÷h 5、等底等高情况下,圆柱体积是圆锥体积的3倍。 1 等底等高的情况下,圆锥体积是圆柱体积的 32 等底等高的情况下,圆锥体积比圆柱体积少 3 等底等高的情况下,圆柱体积比圆锥体积多2倍 6、等体积等高的圆柱和圆锥,圆锥底面积是圆柱底面积的3倍; 等体积等底面积的圆柱 和圆锥,圆锥的高是圆柱 高的3倍。 7、圆柱的横切:切成n段,需要n-1次,增加2×(n-1)个底面积 8、圆柱的纵切:切1次,增加2个长方形,长方形的长是底面的直径,宽是圆柱的高 9、圆锥的纵切:切1次,增加2个三角形,三角形的底是圆锥的直径, 三角形的高是圆锥的高 10、把一个正方体削成一个最大的圆柱(或圆锥),正方体的棱长就是圆柱(或圆锥)的底面直径和高。 11、①熔铸(或铸成),体积不变。 本文来源:https://www.wddqw.com/doc/cc7a0926760bf78a6529647d27284b73f342366a.html