任意多位数乘法速算技巧 按大中小组进行计算,1、2、3为小数组,4、5、5为中数组,7、8、9为大数组: 1.凡被乘数遇到1、2、3时,其方法为: 是1:下位减补数一次(或1倍) 被乘数 是2:下位减补数二次(或2倍) 是3:下位减补数三次(或3倍) 例题: 例如:231×79(79的补数是21) 算序: ①在被乘数个位数字1的下位减去补数一次(21),得23—079(破折号前为被乘数,破折号后为乘积,下同); ②在被乘数十位3的下位减去补数三次(21×2=63)得2-2449; ③在被乘数百位2的下位减去补数二次(21×4=42)得18249(乘积)。 2.凡是被乘数的各位数字遇到4、5、6时,其方法为: 是4:本位减补数一半,下位加补数一次 被乘数 是5:本位减补数一半 是6:本位减补数一半,下位减补数一次 例题: 例如:456×758=345648(758的补数是242) 算序: 在被乘数个位6的本位减补数一半121.下位减242得45—4548; 在被乘数十位数5的本位减121,得4—42448; 在被乘数百位4的本位减121,下位加242得345648(积)。 3.凡是被乘数的各位数遇到7、8、9时,其方法为; 是9:本位减补数一次,下位加补数一次。 被乘数 是8:本位减补数一次,下位加补数二次。 是7:本位减补数一次,下位加补数三次。 例题: 例如:987×879=867573 (879的补数是121) 算序: 被乘数个位7的本位减121,下位加363得98-6153; 被乘数十位8的本位减121,下位加242得9-76473; 被乘数百位9的本位减121,下位加121得867573(积)。 4.凡是被乘数遇到989697等大数联运算时,其方法为: 被乘数后位按10补加补数,前位遇到9不动,前位遇到6、7、8时,按9补加补数次数(均由下位补加补数次数),最后被乘数首位减补数一次。 例题: 例如:9798×8679= (8679的补数1321) 算序: 被乘数个位8的下位加2642,得979-82642; 被乘数十位9不动; 被乘数百位7的下位加2642,得9-8246842; 被乘数的首位减1321,得(乘积)。 上面的这些技巧分析,非常有条理性,孩子们第一遍可以根据例题进行验证,其次,就自己试着句子进行验证,通过这些验证学习,孩子们很容易就掌握了这些速算技巧。 本文来源:https://www.wddqw.com/doc/d2e329545d0e7cd184254b35eefdc8d377ee1464.html