初中数学竞赛试题 (初二年级) 一、选择题(7×8=56分) 1. 下列四个数中等于100个连续自然数之和的是( ) (A)1627384950 (B)2345678910 (C)3579111300 (D)4692581470 2. 在体育活动中,初二(1)班的n个学生围成一圈做游戏,与每个学生左右相邻的两个学生的性别不同.则n的取值可能是( ) (A)43 (B)44 (C)45 (D)46 3. 在△ABC中,∠B是钝角,AB=6,CB=8,则AC的范围是( ) (A)8<AC<10 (B)8<AC<14 (C)2<AC<14 (D)10<AC<14 4. 图(1)是图(2)中立方体的平面展开图,图(1)与图(2) 中的箭头位置和方向是一致的,那么图(1)中的线段AB与图(2) 中对应的线段是( ) (A)e (B)h (C)k (D)d 5. 若a、b、c是三角形的三边,则下列关系式中正确的是( ) (A)abc2bc >0 (B)abc2bc=0 (C) abc2bc< 0 (D)abc2bc≤0 6. 一个盒子里有200只球,从101到300连续编号,甲乙两人分别从盒子里拿球,直到他们各有100个球为止,其中甲拿到102号,乙拿到280号,则甲拿到的球的编号总和与乙拿到球的编号综合之差的最大值是( ) (A)10000 (B)9822 (C)377 (D)9644 7 .如果关于x的不等式组 2222222222227xm0,的整数解仅为1,2,3,那么适合这个不等式组的6xn0战术对(m,n)共有( ) (A)49对 (B)42对 (C)36对 (D)13对 8.如果xx1是axbx1的一个因式,则b的值为( ) (A)-2 (B)-1 (C)0 (D)2 二、填空题(7×8=56分) 9.美国篮球巨星乔丹在一场比赛中24投14中,拿下28分,其中三分球三投三中,那么乔丹两分球投中 球,罚球投中 球. 10.已知:23115ba,则 . ababab第 1 页 共 3 页 11. 若y1x4,y212x8,则满足y1>y2的整数值x有: . 212.x表示不超过x的最大整数,如3.2=3.已知正整数n小于2002,且,362则这样的n有 个. 13. △ABC中,BD和CE分别是AC和AB上的中线,且BD与CE互相垂直,BD=8,CE=12,则△ABC的面积是 . 14.如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.若图中大小正方形的面积分别为62为 . 15.已知nnn1和4,则直角三角形的两条直角边边长分别2a4a10,2且a4ma215,3a3ma23a则m= . 16.将2,3,4,5,6,7,8,9,10,11这10个自然数填到图中10个格子里,每个格子只填一个数,使得“田”字形4个格子中所填数字之和都等于p,那么p的最大值为 . 三、解答题(12×4=48分) 17. 如果多项式xa5x5a1能分解成两个一次因式2(x+b),(x+c)的乘积(b、c为整数),则a的值应为多少? 18.某城市有一段马路需要维修,这段马路的长不超过3500米,今有甲、乙、丙三个施工队,分别施工人行道、非机动车道和机动车道.他们于某天零时同时开工,每天24小时连续施工.若干天后的零时,甲完成任务;几天后的18时,乙完成任务;自乙队完成的当天零时起,再过几天后的8时,丙完成任务.已知三个施工队每天完成的施工任务分别为300米,240米,180米,问这段路面有多长? 19. △ABC中,已知∠C=60°,AC>BC,又△ABC‘‘‘,△BCA,△CAB都是△ABC形外的等边三角形,而点D在AC上,且BC=DC. ‘‘ (1)证明:△CBD≌△BDC; 第 2 页 共 3 页 本文来源:https://www.wddqw.com/doc/f2f0176a58eef8c75fbfc77da26925c52dc59158.html