解答:三人报名参加比赛,彼此互不影响独立报名。所以可以看成是分三步完成,即一个人一个人地去报名。首先,王英去报名,可报4个项目中的一项,有4种不同的报名方法。其次,赵明去报名,也有4种不同的报名方法。同样,李刚也有4种不同的报名方法。满足乘法原理的条件,可由乘法原理解决。
解:由乘法原理,报名的结果共有4×4×4=64种不同的情形。
2、由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?
解答:
分析要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决。
解:由1、2、3、4、5、6共可组成
3×4×5×3=180
个没有重复数字的四位奇数。
想:由“2张桌子和5把椅子的价钱相等”这一条件,可以推出4张桌子就相当于10把椅子的价钱,买4张桌子和6把椅子共用640元,也就相当于买16把椅子共用640元。
解:5×(4÷2)+6=16(把)
640÷16=40(元)
40×5÷2=10(元)
答:桌子和椅子的单价分别是100元、40元。
2、父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?
想:5年前父亲的年龄是(45-5)岁,儿子的年龄是(45-5)÷4岁,再加上5就是今年儿子的年龄。
解:(45-5)÷4+5=10+5=15(岁)
答:今年儿子15岁。
【答案】这样想:原来甲乙两书架共有1980本书。若从甲书架减去285本,乙书架增加285本,则两书架上的书相等,说明甲书架上的书比乙书架上多285+285=570(本)。(1980-570)2=705(本)乙书架上原有的书。705+570=1275(本)甲书架上原有的书。
2、20个小朋友排一队,从前面数学学排在第2个,思思排在学学后面第4个,那么思思从后往前数排第几个?
【答案】从前面数学学排在第2个,思思排在学学后面第4个,说明从前面数思思排在第2+4=6(个),思思的右边还有20-6=14(个),所以从后往前数思思排在第14+1=15(个)
3、懒羊羊和美羊羊一共有24个棒棒糖,美羊羊的棒棒糖比懒羊羊的2倍少3个,懒羊羊和美羊羊各有多少个棒棒糖?
【答案】用画线段的方法可以算出,(24+3)3=9(个),懒羊羊有9个棒棒糖,美羊羊有92-3=15(个)棒棒糖。
分析:被减数=减数+差,所以,被减数和减数与差的和就各自等于被减数、减数与差的和的一半,即:
被减数=减数+差=(被减数+减数+差)/2。因此,减数与差的和=120/2=60。这样就是基本的和倍问题了。小数=和/(倍数+1)
解:减数与差的和=120/2=60,差=60/(3+1)=15。
2、已知两个数的商是4,而这两个数的差是39,那么这两个数中较小的一个是多少?分析:两个数的商是4,即大数是小数的4倍,因此,这是一个基本的差倍问题。小数=差/(倍数-1)。
解:两个数中较小的一个=39/(4-1)=13。
分析:车÷马=2,车是马的2倍;炮÷车=4,炮是车的4倍,是马的8倍;炮-马=56,炮比马大56。差倍问题。
解:马=56/(8-1)=8,炮=56+8=64,车=8*2=16,车+马+炮=8+64+16=88。
2、聪聪用10元钱买了3支圆珠笔和7本练习本,剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,问一支圆珠笔的售价是多少元?
分析:剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,说明圆珠笔比练习本贵1角4分+8角=9角4分,那么,3支圆珠笔就要比三本练习本贵94*3=282分=2元8角2分,这样,就相当于在10元中扣除2元8角2分加8角,正好可以买11本练习本,所以,每本练习本的价钱是(1000-282-80)/11=58分=5角8分。
解:圆珠笔-练习本=14+80=94分,每本练习本的价钱是(1000-94*3-80)/11=58分=5角8分,圆珠笔的售价=58+94=152分=1元5角2分。
答案与解析:易知第一个这样的数为5,注意在第一个数列中,公差为3,第二个数列中公差为4,也就是说,第二对数减5即是3的倍数又是4的倍数,这样所求转换为求以5为首项,公差为12的等差数的项数,5、17、29、……,由于第一个数列大为2+(200-1)×3=599;第二数列大为5+(200-1)×4=801。新数列大不能超过599,又因为5+12×49=593,5+12×50=605,所以共有50对。
2、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40km,乙车每小时行45km,两地相距多少km?(交换乘客的时间略去不计)
参考答案:
1、解析:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
答:每支铅笔0.2元。
2、解析:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。
答:两地相距255km。
分析:和差基本问题,和11270米,差2270米,大数=(和+差)/2,小数=(和-差)/2。解:铁路桥长=(11270+2270)/2=6770米,公路桥长=(11270-2270)/2=4500米。
2、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。
分析:先将一、二两个小组作为一个整体,这样就可以利用基本和差问题公式得出第一、二两个小组的人数和,然后对第一、二两个组再作一次和差基本问题计算,就可以得出第一小组的人数。
解:一、二两个小组人数之和=(180+20)/2=100人,第一小组的人数=(100-2)/2=49人。
想:“从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米。根据路程、速度和时间的关系,就可求得所需时间。
解:(240+264)÷(20+16)=504÷30=14(秒)
答:从两车头相遇到两车尾相离,需要14秒。
2、一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?
想:火车通过隧道是指从车头进入隧道到车尾离开隧道,所行的路程正好是车身与隧道长度之和。
解:(600+1150)÷700=1750÷700=2.5(分)
答:火车通过隧道需2.5分。
想:根据题意,33米比18米长的米数正好是3根细钢管的长度,由此可求出一根细钢管的长度,然后求一根粗钢管的长度。
解:(33-18)÷(5-2)=5(米)
18-5×2=8(米)
答:一根粗钢管长8米,一根细钢管长5米。
2、水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?
想:由题意知,实际10天比原计划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原计划还需用(12-10)天才能完成,也就是说原计划(12-10)天能生产水泥(4.8×10)吨。
解:4.8×10÷(12-10)=24(吨)
答:原计划每天生产水泥24吨。
正在阅读:
小学生奥数趣味数学练习题10-25
2017年广东药学职称考试准考证打印网址:www.21wecan.com11-21
托福听力词汇解析:DisplacementActivity讲座类11-13
丰收的秋天作文400字06-24
[北京物资学院2022研究生招生简章]2018北京物资学院研究生招生简章03-06
2019年广东二级建造师考试报考程序10-02
山西警官职业学院2021年招生章程07-19
新疆教育考试院成人高考成绩查询入口:http://www.xjzk.gov.cn/09-15