相似三角形的判定教学反思 相似三角形是初中数学学习的重点内容,对学生的水平培养与训练,有着重要的地位,而“相似三角形判定定理一”又是相似三角形这章内容的重点与难点所在,“难”的不是定理的本身,而是要跟以前学过的“角的等量关系”证明联系紧密,综合性比较强,所以对定理的使用也带来的障碍。“相似三角形判定定理一”应用的一个方面,这是根据对最近几年中考、各区县模拟考的压轴题的研究,发现全等三角形证明当中,我们能够找到“一条直线上有三个相等的角”这样的条件原型,所以在这节课就是基于这样的原型,选择了相关内容,试图从一个侧面突破这章教学的难点。 通过建立数学模型,引导学生使用化归思想。要让学生善于学习,促动他们通法的掌握是重要途径之一。化归思想与转化思想不同,主要是化归思想必须有一归结的目标,也就是老经验。所以,在教学实践中,我采用了下列两个做法:一是建立“一线三等角”的数学模型,让学生在实验操作中探寻出折纸问题中的数学问题本质特征。并把它上升为一种理论,指导其他问题的解决。二是采用探究条件的转化,使问题表象发生变化,引导学生去伪存真,还原出数学问题的本质。 为突破重点,分解难点,我选择题分组教学的方式,让学生对一类例题求解,然后引导学生归纳他们的共同特征,建构起他们的知识结构:一条直线上有三个角相等,就能证明左右两个三角形相似,还能得到一个有 用的等积式。让学生体验与感悟演绎与归纳的数学思想。例一通过等边三角形翻折问题,是引入教学,例二通过矩形中直角的翻折,再次引发学生的认知冲突,诱发他们思考两道题是同类型的,联系紧密,区别仅仅三个等角的度数不相同,他们可能会猜测:这种相似关系与角的度数无关。所以再次设计例三、例四,分别是三个相等的锐角、相等的钝角,再次验证刚才的猜想。这时再让学生总结规律,探讨有用的小结论,让他们起名等活动,充分理解与理解建构出来的数学模型,最后通过例5,让学生体验化归思想,让他们在复杂图形的分析中,把条件转化,向已经熟练掌握的知识转移,从而使问题得以解决。 在教学后,我觉得有很多需要改进的地方: (1) 教学的方式过于单一,学生的参与面较低。主要是我没有调动好他们的情绪,说明我对课堂的驾驭水平还需要提升。(2) 教学内容还有待于进一步改进。即使这是一堂题分组教学的实践课,也较好地完成了教学目标。但站在更高的角度来思考,反映出我还有些急燥,应该把这个题型至少要细分为基本图形的形成、基本图形的巩固、基本图形的拓展应用三个层次,用2-3课时的时间逐步推进教学,效果可能会更好。 本文来源:https://www.wddqw.com/doc/7138ebe25cbfc77da26925c52cc58bd6318693aa.html