“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 平行四边形对边互相平行 2) 三角形中位线性质 3) (即公理4):平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: a∥ca∥bb∥c如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线a∥a和交线β a b a∥bα 平行。 b (二)直线与平面平行的证明 1) 判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 aba∥baa∥b 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。a∥a∥α aβ (三)平面与平面平行的证明 判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 a⊂b⊂a∩bPa//b//⇒//baP “垂直关系”常见证明方法 (一)直线与直线垂直的证明 1) 直线与平面垂直的性质: 如果一条直线与一个平面垂直,则这条直线垂直于此平面内的所有直线。 a bbaα b a 2) 利用平面与平面垂直的性质推论: 如果两个平面互相垂直,在这两个平面内分别作垂直于交线的直线,则这两条直线互相垂直。 labalblβ abb l α a (二)直线与平面垂直的证明 1) 判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线垂直于此平面。 ababAlalbllbAa 2) 平面与平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。 本文来源:https://www.wddqw.com/doc/8a8c988afbb069dc5022aaea998fcc22bdd14303.html