等式与等式的性质

时间:2024-04-04 23:10:21 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。


等式与等式的性质

用等号“=”连接的式子,叫做等式。 等式可以分为三类:

1)恒等式。在等号两边的代数式中,它含有的字母无论取什么值,都能使两边的值相等。例如:358a+a=2a等,都是恒等式。 2)条件等式。在等号两边的代数式中,它含有的字母只有取某些值时,等号两边的值才能相等。这样的等式叫做条件等式。例如:2a6,只有当a3时,等号两边的值才能相等,所以是条件等式。 3)矛盾等式。在形式上是用等号连接的式子,但实质上无法使等号两边的值相等。这样的等式叫做矛盾等式。例如:a1a2,就是矛盾等式。

对于恒等式和条件等式,有以下基本性质:

1)等式两边可以调换位置(对称性)。也就是说,如果AB那么BA

2)等式中,相等的量可以传递(传递性)。也就是说,如果ABBC,那么AC

3)等式两边,加上(或减去)同一个数,等式仍然成立。也就是说,如果AB,那么A±m=B±m。

4)等式两边,乘同一个数,或除以同一个非零数,等式仍然成立。

也就是说,如果AB,那么AmBm,或



,(n≠0)。


本文来源:https://www.wddqw.com/doc/9188182d1be8b8f67c1cfad6195f312b3169eb84.html