中考数学备考之平行四边形压轴突破训练∶培优易错试卷篇含答案解析
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
中考数学备考之平行四边形压轴突破训练∶培优易错试卷篇含答案解析 一、平行四边形 1.在图1中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上. 操作示例 当2b<a时,如图1,在BA上选取点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH. 思考发现 小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连结CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形. 实践探究 (1)正方形FGCH的面积是 ;(用含a, b的式子表示) (2)类比图1的剪拼方法,请你就图2—图4的三种情形分别画出剪拼成一个新正方形的示意图. 联想拓展 小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时(如图5),能否剪拼成一个正方形?若能,请你在图5中画出剪拼成的正方形的示意图;若不能,简要说明理由. 【答案】(1)a2+b2;(2)见解析;联想拓展:能剪拼成正方形.见解析. 【解析】分析:实践探究:根据正方形FGCH的面积=BG2+BC2进而得出答案; 应采用类比的方法,注意无论等腰直角三角形的大小如何变化,BG永远等于等腰直角三角形斜边的一半.注意当b=a时,也可直接沿正方形的对角线分割. 详解:实践探究:正方形的面积是:BG2+BC2=a2+b2; 剪拼方法如图2-图4; 联想拓展:能, 剪拼方法如图5(图中BG=DH=b). . 点睛:本题考查了几何变换综合,培养学生的推理论证能力和动手操作能力;运用类比方法作图时,应根据范例抓住作图的关键:作的线段的长度与某条线段的比值永远相等,旋转的三角形,连接的点都应是相同的. 2.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒. (1)P点的坐标为多少(用含x的代数式表示); (2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值; (3)当x为何值时,△NPC是一个等腰三角形?简要说明理由. 【答案】(1)P点坐标为(x,3﹣(2)S的最大值为(3)x=【解析】 ,或x=,此时x=2. ,或x=. x). 试题分析:(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,①可通过PM∥OC得出的对应成比例线段来求; ②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和∠ACB的正切值求出PQ的长,然后根据PM=AB﹣PQ来求出PM的长.得出OM和PM的长,即可求出P点的坐标. (2)可按(1)②中的方法经求出PQ的长,而CN的长可根据CN=BC﹣BN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式. (3)本题要分类讨论: ①当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和∠ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值; ②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CN﹣CQ求出QN的表达式,根据题设的等量条件即可得出x的值. ③当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN的长,联立CN的表达式即可求出x的值. 试题解析:(1)过点P作PQ⊥BC于点Q, 有题意可得:PQ∥AB, ∴△CQP∽△CBA, ∴∴解得:QP=∴PM=3﹣ x, x, 由题意可知,C(0,3),M(x,0),N(4﹣x,3), P点坐标为(x,3﹣x). (2)设△NPC的面积为S,在△NPC中,NC=4﹣x, NC边上的高为∴S==﹣(4﹣x)×(x﹣2)2+,其中,0≤x≤4. x=. ,此时x=2. (﹣x2+4x) ∴S的最大值为(3)延长MP交CB于Q,则有PQ⊥BC. ①若NP=CP, ∵PQ⊥BC, ∴NQ=CQ=x. ∴3x=4, ∴x=. x,4﹣x=x, ②若CP=CN,则CN=4﹣x,PQ=x,CP=∴x=; ③若CN=NP,则CN=4﹣x. ∵PQ=x,NQ=4﹣2x, ∵在Rt△PNQ中,PN2=NQ2+PQ2, ∴(4﹣x)2=(4﹣2x)2+(∴x=. ,或x=,或x=. x)2, 综上所述,x= 考点:二次函数综合题. 3.如图①,在等腰RtVABC中,BAC90o,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使CED90o,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF. 1请直接写出线段AF,AE的数量关系; 2①将VCED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论; ②若AB25,CE2,在图②的基础上将VCED绕点C继续逆时针旋转一周的过程中,当平行四边形ABFD为菱形时,直接写出线段AE的长度. 【答案】(1)证明见解析;(2)①AF【解析】 【分析】 2AE②42或22. 1如图①中,结论:AF2AE,只要证明VAEF是等腰直角三角形即可; 2①如图②中,结论:AF2AE,连接EF,DF交BC于K,先证明VEKF≌VEDA再证明VAEF是等腰直角三角形即可; ②分两种情形a、如图③中,当ADAC时,四边形ABFD是菱形.b、如图④中当ADAC时,四边形ABFD是菱形.分别求解即可. 【详解】 1如图①中,结论:AF2AE. 理由:Q四边形ABFD是平行四边形, ABDF, QABAC, ACDF, QDEEC, AEEF, QDECAEF90o, VAEF是等腰直角三角形, AF2AE. 故答案为AF2AE. 2AE. 2①如图②中,结论:AF 理由:连接EF,DF交BC于K. Q四边形ABFD是平行四边形, AB//DF, DKEABC45o, EKF180oDKE135o,EKED, QADE180oEDC180o45o135o, EKFADE, QDKCC, DKDC, QDFABAC, KFAD, 在VEKF和VEDA中, EKEDEKFADE, KFADVEKF≌VEDA, EFEA,KEFAED, FEABED90o, VAEF是等腰直角三角形, AF2AE. ②如图③中,当ADAC时,四边形ABFD是菱形,设AE交CD于H,易知EHDHCH2,AH(25)2(2)232,AEAHEH42, 如图④中当ADAC时,四边形ABFD是菱形,易知AEAHEH32222, 综上所述,满足条件的AE的长为42或22. 【点睛】 本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型. 4.已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF. (1)求证:△DOE≌△BOF. (2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由. 【答案】(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析. 【解析】 试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA); (2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案. 试题解析:(1)∵在▱ABCD中,O为对角线BD的中点, ∴BO=DO,∠EDB=∠FBO, 在△EOD和△FOB中 , ∴△DOE≌△BOF(ASA); (2)当∠DOE=90°时,四边形BFDE为菱形, 理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形, ∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形. 考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定. 5.已知矩形纸片OBCD的边OB在x轴上,OD在y轴上,点C在第一象限,且OB8,OD6.现将纸片折叠,折痕为EF(点E,F是折痕与矩形的边的交点),点P为点D的对应点,再将纸片还原。 (I)若点P落在矩形OBCD的边OB上, ①如图①,当点E与点O重合时,求点F的坐标; ②如图②,当点E在OB上,点F在DC上时,EF与DP交于点G,若OP7,求点F的坐标: (Ⅱ)若点P落在矩形OBCD的内部,且点E,F分别在边OD,边DC上,当OP取最小值时,求点P的坐标(直接写出结果即可)。 【答案】(I)①点F的坐标为(6,6);②点F的坐标为【解析】 【分析】 8586,6;(II)P, 1455(I)①根据折叠的性质可得DOFPOF45o,再由矩形的性质,即可求出F的坐标; ②由折叠的性质及矩形的特点,易得DGFPGE,得到DFPE,再加上平行,可以得到四边形DEPF是平行四边形,在由对角线垂直,得出 YDEPF是菱形,设菱形的边长为x,在RtODE中,由勾股定理建立方程即可求解; (Ⅱ)当O,P,F点共线时OP的长度最短. 【详解】 解:(I)①∵折痕为EF,点P为点D的对应点 DOFPOF DOFPOF45o ∵四边形OBCD是矩形, ODF90 DFODOF45 DFDO6 点F的坐标为(6,6) ②∵折痕为EF,点P为点D的对应点. DGPG,EFPD ∵四边形OBCD是矩形, DC//OB, FDGEPG; QDGFPGE DGFPGE DFPE QDF//PE ∴四边形DEPF是平行四边形. QEFPD, YDEPF是菱形. 设菱形的边长为x,则DEEPx QOP7, OE7x, 222在RtODE中,由勾股定理得ODQBDE 62(7x)2x2 解得x85 1485 1485,6 14DF∴点F的坐标为(Ⅱ)P, 【点睛】 此题考查了几何折叠问题、等腰三角形的性质、平行四边形的判定和性质、勾股定理等知识,关键是根据折叠的性质进行解答,属于中考压轴题. 8655 6.菱形ABCD中、∠BAD=120°,点O为射线CA 上的动点,作射线OM与直线BC相交于点E,将射线OM绕点O逆时针旋转60°,得到射线ON,射线ON与直线CD相交于点F. (1)如图①,点O与点A重合时,点E,F分别在线段BC,CD上,请直接写出CE,CF,CA三条段段之间的数量关系; 1AC,E,F分别在线段BC的延长线和线3段CD的延长线上,请写出CE,CF,CA三条线段之间的数量关系,并说明理由; (2)如图②,点O在CA的延长线上,且OA=(3)点O在线段AC上,若AB=6,BO=27,当CF=1时,请直接写出BE的长. 【答案】(1)CA=CE+CF.(2)CF-CE=【解析】 【分析】 4AC.(3)BE的值为3或5或1. 3(1)如图①中,结论:CA=CE+CF.只要证明△ADF≌△ACE(SAS)即可解决问题; 4AC.如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角3形.只要证明△FOG≌△EOC(ASA)即可解决问题; (3)分四种情形画出图形分别求解即可解决问题. 【详解】 (1)如图①中,结论:CA=CE+CF. (2)结论:CF-CE= 理由:∵四边形ABCD是菱形,∠BAD=120° ∴AB=AD=DC=BC,∠BAC=∠DAC=60° ∴△ABC,△ACD都是等边三角形, ∵∠DAC=∠EAF=60°, ∴∠DAF=∠CAE, ∵CA=AD,∠D=∠ACE=60°, ∴△ADF≌△ACE(SAS), ∴DF=CE, ∴CE+CF=CF+DF=CD=AC, ∴CA=CE+CF. (2)结论:CF-CE=4AC. 3理由:如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形. ∵∠GOC=∠FOE=60°, ∴∠FOG=∠EOC, ∵OG=OC,∠OGF=∠ACE=120°, ∴△FOG≌△EOC(ASA), ∴CE=FG, ∵OC=OG,CA=CD, ∴OA=DG, 14AC=AC, 33(3)作BH⊥AC于H.∵AB=6,AH=CH=3, ∴CF-EC=CF-FG=CG=CD+DG=AC+∴BH=33, 如图③-1中,当点O在线段AH上,点F在线段CD上,点E在线段BC上时. ∵OB=27, ∴OH=OB2BH2=1, ∴OC=3+1=4, 由(1)可知:CO=CE+CF, ∵OC=4,CF=1, ∴CE=3, ∴BE=6-3=3. 如图③-2中,当点O在线段AH上,点F在线段DC的延长线上,点E在线段BC上时. 由(2)可知:CE-CF=OC, ∴CE=4+1=5, ∴BE=1. 如图③-3中,当点O在线段CH上,点F在线段CD上,点E在线段BC上时. 同法可证:OC=CE+CF, ∵OC=CH-OH=3-1=2,CF=1, ∴CE=1, ∴BE=6-1=5. 如图③-4中,当点O在线段CH上,点F在线段DC的延长线上,点E在线段BC上时. 同法可知:CE-CF=OC, ∴CE=2+1=3, ∴BE=3, 综上所述,满足条件的BE的值为3或5或1. 【点睛】 本题属于四边形综合题,考查了全等三角形的判定和性质,等边三角形的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题. 7.正方形ABCD,点E在边BC上,点F在对角线AC上,连AE. (1)如图1,连EF,若EF⊥AC,4AF=3AC,AB=4,求△AEF的周长; (2)如图2,若AF=AB,过点F作FG⊥AC交CD于G,点H在线段FG上(不与端点重合),连AH.若∠EAH=45°, 求证:EC=HG+2FC. 【答案】(1)2542;(2)证明见解析 【解析】 【分析】 (1)由正方形性质得出AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,得出AC=2AB=42,求出AF=32,CF=AC﹣AF=2,求出△CEF是等腰直角三角形,得出EF=CF=2,CE=2CF=2,在Rt△AEF中,由勾股定理求出AE,即可得出△AEF的周长; (2)延长GF交BC于M,连接AG,则△CGM和△CFG是等腰直角三角形,得出CM=CG,CG=2CF,证出BM=DG,证明Rt△AFG≌Rt△ADG得出FG=DG,BM=FG,再证明△ABE≌△AFH,得出BE=FH,即可得出结论. 【详解】 (1)∵四边形ABCD是正方形, ∴AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°, ∴AC=2AB=42, ∵4AF=3AC=122, ∴AF=32, ∴CF=AC﹣AF=2, ∵EF⊥AC, ∴△CEF是等腰直角三角形, ∴EF=CF=2,CE=2CF=2, 在Rt△AEF中,由勾股定理得:AE=AF2EF225, ∴△AEF的周长=AE+EF+AF=252322542; (2)证明:延长GF交BC于M,连接AG,如图2所示: 则△CGM和△CFG是等腰直角三角形, ∴CM=CG,CG=2CF, ∴BM=DG, ∵AF=AB, ∴AF=AD, 在Rt△AFG和Rt△ADG中, AGAG, AFAD∴Rt△AFG≌Rt△ADG(HL), ∴FG=DG,∴BM=FG, ∵∠BAC=∠EAH=45°, ∴∠BAE=∠FAH, ∵FG⊥AC, ∴∠AFH=90°, 在△ABE和△AFH中, BAFH90, ABAFBAEFAH∴△ABE≌△AFH(ASA), ∴BE=FH, ∵BM=BE+EM,FG=FH+HG, ∴EM=HG, ∵EC=EM+CM,CM=CG=2CF, ∴EC=HG+2FC. 【点睛】 本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键. 8.(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C处,若∠ADB42o,则DBE的度数为______o. (2)小明手中有一张矩形纸片ABCD,AB4,AD9. (画一画)如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚); (算一算)如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A,B处,若AG7,求BD的长. 3 【答案】(1)21;(2)画一画;见解析;算一算:BD3 【解析】 【分析】 (1)利用平行线的性质以及翻折不变性即可解决问题; (2)【画一画】,如图2中,延长BA交CE的延长线由G,作∠BGC的角平分线交AD于M,交BC于N,直线MN即为所求; 【算一算】首先求出GD=9-720,由矩形的性质得出AD∥BC,BC=AD=9,由平行线的33性质得出∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,证出∠DFG=∠DGF,由等腰三20,再由勾股定理求出CF,可得BF,再利用翻折不变性,3可知FB′=FB,由此即可解决问题. 【详解】 角形的判定定理证出DF=DG=(1)如图1所示: ∵四边形ABCD是矩形, ∴AD∥BC, ∴∠ADB=∠DBC=42°, 由翻折的性质可知,∠DBE=∠EBC=故答案为21. (2)【画一画】如图所示: 1∠DBC=21°, 2 【算一算】 如3所示: ∵AG=7,AD=9, 3720, 33∴GD=9-∵四边形ABCD是矩形, ∴AD∥BC,BC=AD=9, ∴∠DGF=∠BFG, 由翻折不变性可知,∠BFG=∠DFG, ∴∠DFG=∠DGF, ∴DF=DG=20, 32∵CD=AB=4,∠C=90°, 16202∴在Rt△CDF中,由勾股定理得:CF=DF2CD2, 433∴BF=BC-CF=91611, 33由翻折不变性可知,FB=FB′=∴B′D=DF-FB′=【点睛】 11, 320113. 33四边形综合题,考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题. 9.如图①,在矩形ABCD中,点P从AB边的中点E出发,沿着EBC速运动,速度为每秒2个单位长度,到达点C后停止运动,点Q是AD上的点,AQ10,设PAQ的面积为y,点p运动的时间为t秒,y与t的函数关系如图②所示. (1)图①中AB= ,BC= ,图②中m= . (2)当t=1秒时,试判断以PQ为直径的圆是否与BC边相切?请说明理由: (3)点p在运动过程中,将矩形沿PQ所在直线折叠,则t为何值时,折叠后顶点A的对应点A落在矩形的一边上. 【答案】(1)8,18,20;(2)不相切,证明见解析;(3)t=【解析】 【分析】 117、5、. 23(1)由题意得出AB=2BE,t=2时,BE=2×2=4,求出AB=2BE=8,AE=BE=4,t=11时,2t=22,得出BC=18,当t=0时,点P在E处,m=△AEQ的面积=1AQ×AE=20即可; 2(2)当t=1时,PE=2,得出AP=AE+PE=6,由勾股定理求出PQ=234,设以PQ为直径的圆的圆心为O',作O'N⊥BC于N,延长NO'交AD于M,则MN=AB=8,O'M∥AB,MN=AB=8,由三角形中位线定理得出O'M=即可得出结论; (3)分三种情况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,则QF=AB=8,BF=AQ=10,由折叠的性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,由勾股定理求出A'F=2AQQF2=6,得出A'B=BF-A'F=4,在Rt△A'BP中,BP=4-2t,PA'=AP=8-1AP=3,求出O'N=MN-O'M=5<圆O'的半径,2(4-2t)=4+2t,由勾股定理得出方程,解方程即可; ②当点P在BC边上,A'落在BC边上时,由折叠的性质得:A'P=AP,证出∠APQ=∠AQP,得出AP=AQ=A'P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可; ③当点P在BC边上,A'落在CD边上时,由折叠的性质得:A'P=AP,A'Q=AQ=10,在Rt△DQA'中,DQ=AD-AQ=8,由勾股定理求出DA'=6,得出A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=22-2t,由勾股定理得出方程,解方程即可. 【详解】 (1)∵点P从AB边的中点E出发,速度为每秒2个单位长度, ∴AB=2BE, 由图象得:t=2时,BE=2×2=4, ∴AB=2BE=8,AE=BE=4, t=11时,2t=22, ∴BC=22-4=18, 当t=0时,点P在E处,m=△AEQ的面积=故答案为8,18,20; (2)当t=1秒时,以PQ为直径的圆不与BC边相切,理由如下: 当t=1时,PE=2, ∴AP=AE+PE=4+2=6, ∵四边形ABCD是矩形, ∴∠A=90°, ∴PQ=11AQ×AE=×10×4=20; 22AQ2AP210262234, 设以PQ为直径的圆的圆心为O',作O'N⊥BC于N,延长NO'交AD于M,如图1所示: 则MN=AB=8,O'M∥AB,MN=AB=8, ∵O'为PQ的中点, ∴O''M是△APQ的中位线, ∴O'M=1AP=3, 2∴O'N=MN-O'M=5<34, ∴以PQ为直径的圆不与BC边相切; (3)分三种情况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,如图2所示: 则QF=AB=8,BF=AQ=10, ∵四边形ABCD是矩形, ∴∠A=∠B=∠BCD=∠D=90°,CD=AB=8,AD=BC=18, 由折叠的性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°, ∴A'F=2AQQF2=6, ∴A'B=BF-A'F=4, 在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t, 由勾股定理得:42+(4-2t)2=(4+2t)2, 解得:t=1; 2②当点P在BC边上,A'落在BC边上时,连接AA',如图3所示: 由折叠的性质得:A'P=AP, ∴∠APQ'=∠A'PQ, ∵AD∥BC, ∴∠AQP=∠A'PQ, ∴∠APQ=∠AQP, ∴AP=AQ=A'P=10, 在Rt△ABP中,由勾股定理得:BP=10282=6, 又∵BP=2t-4, ∴2t-4=6,解得:t=5; ③当点P在BC边上,A'落在CD边上时,连接AP、A'P,如图4所示: 由折叠的性质得:A'P=AP,A'Q=AQ=10, 在Rt△DQA'中,DQ=AD-AQ=8, 由勾股定理得:DA'=10282=6, ∴A'C=CD-DA'=2, 在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t, 由勾股定理得:AP2=82+(2t-4)2,A'P2=22+(22-2t)2, ∴82+(2t-4)2=22+(22-2t)2, 解得:t=17; 3综上所述,t为【点睛】 117或5或时,折叠后顶点A的对应点A′落在矩形的一边上. 23四边形综合题目,考查了矩形的性质、折叠变换的性质、勾股定理、函数图象、直线与圆的位置关系、三角形中位线定理、等腰三角形的判定、以及分类讨论等知识. 10.问题情境 在四边形ABCD中,BA=BC,DC⊥AC,过点D作DE∥AB交BC的延长线于点E,M是边AD的中点,连接MB,ME. 特例探究 (1)如图1,当∠ABC=90°时,写出线段MB与ME的数量关系,位置关系; (2)如图2,当∠ABC=120°时,试探究线段MB与ME的数量关系,并证明你的结论; 拓展延伸 (3)如图3,当∠ABC=α时,请直接用含α的式子表示线段MB与ME之间的数量关系. tan【答案】(1)MB=ME,MB⊥ME;(2)ME=3MB.证明见解析;(3)ME=MB·【解析】 【分析】 (1)如图1中,连接CM.只要证明△MBE是等腰直角三角形即可; 2. (2)结论:EM=3MB.只要证明△EBM是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM•tan【详解】 (1) 如图1中,连接CM. 2.证明方法类似; ∵∠ACD=90°,AM=MD, ∴MC=MA=MD, ∵BA=BC, ∴BM垂直平分AC, ∵∠ABC=90°,BA=BC, 1∠ABC=45°,∠ACB=∠DCE=45°, 2∵AB∥DE, ∴∠ABE+∠DEC=180°, ∴∠DEC=90°, ∴∠DCE=∠CDE=45°, ∴EC=ED,∵MC=MD, ∴EM垂直平分线段CD,EM平分∠DEC, ∴∠MEC=45°, ∴△BME是等腰直角三角形, ∴BM=ME,BM⊥EM. 故答案为BM=ME,BM⊥EM. ∴∠MBE=(2)ME=3MB. 证明如下:连接CM,如解图所示. ∵DC⊥AC,M是边AD的中点, ∴MC=MA=MD. ∵BA=BC, ∴BM垂直平分AC. ∵∠ABC=120°,BA=BC, 1∠ABC=60°,∠BAC=∠BCA=30°,∠DCE=60°. 2∵AB∥DE, ∴∠ABE+∠DEC=180°, ∴∠DEC=60°, ∴∠DCE=∠DEC=60°, ∴△CDE是等边三角形, ∴EC=ED. ∵MC=MD, ∴EM垂直平分CD,EM平分∠DEC, ∴∠MBE=∴∠MEC=1∠DEC=30°, 2∴∠MBE+∠MEB=90°,即∠BME=90°. 在Rt△BME中,∵∠MEB=30°, ∴ME=3MB. (3) 如图3中,结论:EM=BM•tan. 2 理由:同法可证:BM⊥EM,BM平分∠ABC, 所以EM=BM•tan【点睛】 本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题. . 2 11.在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF. (1)说明△BEF是等腰三角形; (2)求折痕EF的长. 【答案】(1)见解析;(2)【解析】 【分析】 . (1)根据折叠得出∠DEF=∠BEF,根据矩形的性质得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可; (2)过E作EM⊥BC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可. 【详解】 (1)∵现将纸片折叠,使点D与点B重合,折痕为EF,∴∠DEF=∠BEF. ∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形; (2)过E作EM⊥BC于M,则四边形ABME是矩形,所以EM=AB=6,AE=BM. ∵现将纸片折叠,使点D与点B重合,折痕为EF,∴DE=BE,DO=BO,BD⊥EF. ∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°. 在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE===BM,∴FM=﹣=. =. =DE=BF,AE=8﹣DE=8﹣在Rt△EMF中,由勾股定理得:EF=故答案为:. 【点睛】 本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键. 12.如图,抛物线交x轴的正半轴于点A,点B(,a)在抛物线上,点C是抛物线对称轴上的一点,连接AB、BC,以AB、BC为邻边作□ABCD,记点C纵坐标为n, (1)求a的值及点A的坐标; (2)当点D恰好落在抛物线上时,求n的值; (3)记CD与抛物线的交点为E,连接AE,BE,当△AEB的面积为7时,n=___________.(直接写出答案) 【答案】(1)【解析】 , A(3,0);(2) 试题解析:(1)把点B的坐标代入抛物线的解析式中,即可求出a的值,令y=0即可求出点A的坐标. (2)求出点D的坐标即可求解; (3)运用△AEB的面积为7,列式计算即可得解. 试题解析:(1)当由 ,得∴A(3,0) 时,(舍去),(1分) (2)过D作DG⊥轴于G,BH⊥轴于H. ∵CD∥AB,CD=AB ∴∴∴(3) ,, 13.已知:在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE=2. (1)如图①,当四边形EFGH为正方形时,求△GFC的面积; (2)如图②,当四边形EFGH为菱形,且BF=a时,求△GFC的面积(用a表示); (3)在(2)的条件下,△GFC的面积能否等于2?请说明理由. 【答案】(1)10;(2)12-a;(3)不能 【解析】 解:(1)过点G作GM⊥BC于M.在正方形EFGH中, ∠HEF=90°,EH=EF, ∴∠AEH+∠BEF=90°. ∵∠AEH+∠AHE=90°, ∴∠AHE=∠BEF. 又∵∠A=∠B=90°, ∴△AHE≌△BEF. 同理可证△MFG≌△BEF. ∴GM=BF=AE=2.∴FC=BC-BF=10. ∴∵AD∥BC,∴∠AHF=∠MFH. ∵EH∥FG,∴∠EHF=∠GFH. ∴∠AHE=∠MFG. 又∵∠A=∠GMF=90°,EH=GF, ∴△AHE≌△MFG.∴GM=AE=2. ∴(3)△GFC的面积不能等于2. 说明一:∵若S△GFC=2,则12-a=2,∴a=10. 此时,在△BEF中, . 在△AHE中, , ∴AH>AD,即点H已经不在边AD上,故不可能有S△GFC=2. 说明二:△GFC的面积不能等于2.∵点H在AD上, ∴菱形边EH的最大值为∴S△GFC的最小值为又∵,∴BF的最大值为. . 又∵函数S△GFC=12-a的值随着a的增大而减小, . . (2)过点G作GM⊥BC交BC的延长线于M,连接HF. ,∴△GFC的面积不能等于2. 14.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH. (1)求证:∠APB=∠BPH; (2)当点P在边AD上移动时,求证:△PDH的周长是定值; (3)当BE+CF的长取最小值时,求AP的长. 【答案】(1)证明见解析.(2)证明见解析.(3)2. 【解析】 试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案; (2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8; (3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值. 试题解析:(1)解:如图1, ∵PE=BE, ∴∠EBP=∠EPB. 又∵∠EPH=∠EBC=90°, ∴∠EPH-∠EPB=∠EBC-∠EBP. 即∠PBC=∠BPH. 又∵AD∥BC, ∴∠APB=∠PBC. ∴∠APB=∠BPH. (2)证明:如图2,过B作BQ⊥PH,垂足为Q. 由(1)知∠APB=∠BPH, 又∵∠A=∠BQP=90°,BP=BP, 在△ABP和△QBP中, , ∴△ABP≌△QBP(AAS), ∴AP=QP,AB=BQ, 又∵AB=BC, ∴BC=BQ. 又∠C=∠BQH=90°,BH=BH, 在△BCH和△BQH中, , ∴△BCH≌△BQH(SAS), ∴CH=QH. ∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8. ∴△PDH的周长是定值. (3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB. 又∵EF为折痕, ∴EF⊥BP. ∴∠EFM+∠MEF=∠ABP+∠BEF=90°, ∴∠EFM=∠ABP. 又∵∠A=∠EMF=90°, 在△EFM和△BPA中, , ∴△EFM≌△BPA(AAS). ∴EM=AP. 设AP=x 在Rt△APE中,(4-BE)2+x2=BE2. 解得BE=2+, ∴CF=BE-EM=2+-x, ∴BE+CF=-x+4=(x-2)2+3. 当x=2时,BE+CF取最小值, ∴AP=2. 考点:几何变换综合题. 15.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG. (1)求证:△AOG≌△ADG; (2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由; (3)当∠1=∠2时,求直线PE的解析式; (4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由. 【答案】(1)见解析(2)∠PAG =45°,PG=OG+BP.理由见解析(3)y=、【解析】 . x﹣3.(4)试题分析:(1)由AO=AD,AG=AG,根据斜边和一条直角边对应相等的两个直角三角形全等,判断出△AOG≌△ADG即可.(2)首先根据三角形全等的判定方法,判断出△ADP≌△ABP,再结合△AOG≌△ADG,可得∠DAP=∠BAP,∠1=∠DAG;然后根据∠1+∠DAG+∠DAP+∠BAP=90°,求出∠PAG的度数;最后判断出线段OG、PG、BP之间的数量关系即可.(3)首先根据△AOG≌△ADG,判断出∠AGO=∠AGD;然后根据∠1+∠AGO=90°,∠2+∠PGC=90°,判断出当∠1=∠2时,∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,求出∠1=∠2=30°;最后确定出P、G两点坐标,即可判断出直线PE的解析式. (4)根据题意,分两种情况:①当点M在x轴的负半轴上时;②当点M在EP的延长线上时;根据以M、A、G为顶点的三角形是等腰三角形,求出M点坐标是多少即可. 试题解析:(1)在Rt△AOG和Rt△ADG中,(HL) ∴△AOG≌△ADG. (2)在Rt△ADP和Rt△ABP中,∴△ADP≌△ABP, 则∠DAP=∠BAP; ∵△AOG≌△ADG, ∴∠1=∠DAG; 又∵∠1+∠DAG+∠DAP+∠BAP=90°, ∴2∠DAG+2∠DAP=90°, ∴∠DAG+∠DAP=45°, ∵∠PAG=∠DAG+∠DAP, ∴∠PAG=45°; ∵△AOG≌△ADG, ∴DG=OG, ∵△ADP≌△ABP, ∴DP=BP, ∴PG=DG+DP=OG+BP. (3)解:∵△AOG≌△ADG, ∴∠AGO=∠AGD, 又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2, ∴∠AGO=∠PGC, 又∵∠AGO=∠AGD, ∴∠AGO=∠AGD=∠PGC, 又∵∠AGO+∠AGD+∠PGC=180°, ∴∠AGO=∠AGD=∠PGC=180°÷3=60°, ∴∠1=∠2=90°﹣60°=30°; 在Rt△AOG中, ∵AO=3, ∴OG=AOtan30°=3×=, ∴G点坐标为(1), ,0),CG=3﹣, 在Rt△PCG中,PC===3(﹣∴P点坐标为:(3,3, ﹣3 ), 设直线PE的解析式为:y=kx+b, 则解得:, ∴直线PE的解析式为y=x﹣3. (4)①如图1,当点M在x轴的负半轴上时,, ∵AG=MG,点A坐标为(0,3), ∴点M坐标为(0,﹣3). ②如图2,当点M在EP的延长线上时,, 由(3),可得∠AGO=∠PGC=60°, ∴EP与AB的交点M,满足AG=MG, ∵A点的横坐标是0,G点横坐标为∴M的横坐标是2,纵坐标是3, ∴点M坐标为(2,3). ,3). , 综上,可得 点M坐标为(0,﹣3)或(2考点:几何变换综合题. 本文来源:https://www.wddqw.com/doc/c309c524f22d2af90242a8956bec0975f565a473.html