第二章 有理数及其运算 正整数(自然数) 1、有理数的分类 正整数 正数 正分数 整 零 数 负整数 零 有理 有理数 负整数 数 正分数 负数 负分数 分负分 数 数 2、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。解题时要真正掌握数形结合的思想,并能灵活运用。 1)任何一个有理数都可以用数轴上的一个点来表示 2)在数轴上表示的两个数,右边的数总比左边的数大 3)正数都大于0,负数都小于0;正数大于一切负数; 3、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零 1)数a的相反数是-a(a是任意一个有理数) 2)0的相反数是0. 3)若a、b互为相反数,则a+b=0. 4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。 5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。数a的绝对值记作︱a︱ 1) 对任何有理数a,总有︱a︱≥0. 2)零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。 3)若a>0,则︱a︱= a ;若a<0,则︱a︱= -a ;若a =0,则︱a︱= 0 ; 6、有理数比较大小: 1)正数大于零,负数小于零,正数大于一切负数; 2)数轴上的两个点所表示的数,右边的总比左边的大; 3)两个负数,绝对值大的反而小。 7、有理数的运算 : (1)五种运算:加、减、乘、除、乘方 (2)有理数的运算顺序 先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的,对只含乘除,或只含加减的运算,应从左往右运算。 (3)运算法则 1)有理数加法法则 ① 同号两数相加,取相同的符号,并把绝对值相加; ② 异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得0; 2)有理数减法法则:减去一个数,等于加上这个数的相反数. 即 a-b=a+(-b) 3)有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0. 1 / 21 / 2 ① 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当因数有偶数个时,积为正. ② 几个数相乘,有一个因数为0,积就为0. 2 / 22 / 2 本文来源:https://www.wddqw.com/doc/e3b6b129b91aa8114431b90d6c85ec3a87c28bd8.html