1.小学生奥数牛吃草问题练习题 篇一
牧场上一片牧草,可供27头牛吃6周,或者供23头牛吃9周。如果牧草每周匀速生长,可供21头牛吃几周?牛牛吃草答案:
可供21头牛吃12周
27头牛6周吃的草可供多少头牛吃一周?27×6=162
23头牛9周吃的草可供多少头牛吃一周?23×9=207
(9-6)周新长的草可供多少头牛吃一周?207-162=45
一周新长的草可供多少头牛吃一周?45÷3=15
原有的草可供多少头牛吃一周?162-15×6=72或207-15×9=72
21头牛中的15头牛专吃新长的草,余下的(21-15=)6头牛去吃原有的草几周吃完?
72÷(21-15)=12
2.小学生奥数牛吃草问题练习题 篇二
小诗博士的实验室内有一个水槽,水槽有1根注水管和6根排水管。打开注水管后,水不停地匀速流入水槽。若干分钟后,小诗博士想把水排出。如果将排水管全部打开,6分钟可以将水排光如果只打开3根排水管,15分钟可以将水排光。如果小诗博士同时打开4根排水管,多少分钟后可以将水排光?解析∶假设一根排水管一分钟排出1份水
注水的速度:(15×3-6×6)÷(15-6)=1(份/分钟)
原有水量:15×3-15×1=30(份)
需要的时间:30÷(4-1)=10(分钟)
答:10分钟后可以将水排光。
3.小学生奥数多人行程练习题 篇三
1、若这片草地,草匀速生长。该草地可供14头牛吃30天或供20头牛吃20天。那么该片草地每天新长的草可供2头牛吃多少天?解析∶假设1头牛1天吃1份草;
那么,14头牛30天吃14×1×30=420(份)
20头牛20天吃20×1×20=400(份)
长草速度∶(420-400)÷(30-20)=2(份/天)
每天新长草2份,可供2头牛吃2÷2=1(天)
答:该片草地每天新长的草可供2头牛吃1天。
2、一片草地,草匀速生长。这片草地可供12头牛吃10天,或供14头牛吃6天。如果开始放进草地的牛为20头,吃完一天后牵走了10头,剩下的牛在牧场吃几天能将草吃完?
解析∶假设1头牛1天吃1份草
长草速度:(12×10-14×6)÷(10-6)=9(份/天)
原来的草量:12×10-9×10=30(份)
吃完一天还剩的草:30-(20-9)=19(份)
牵走10头牛后,可以吃的天数19÷(10-9)=19(天)
答:剩下的牛在牧场吃19天能将草吃完。
4.小学生奥数多人行程练习题 篇四
B在A,C两地之间。甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信。乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来。已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?解析:
让丙先去追后出发的乙,10÷(3-1)=5分钟追上,
拿到信后去追甲,甲乙相距甲行10+10+10+5+5=40分钟的路程,
丙用40÷(3-1)=20分钟追上甲
交换信后返回追乙,这时乙丙相距乙行40+20×2=80分钟的路程,
丙用80÷(3-1)=40分钟追上乙,把信交给乙。
所以,共用了5+20+40=65分钟。
乙共行了65+10=75分钟,丙回到B地还要75÷3=25分钟。
所以共用去65+25=90分钟
换个思路,追上并返回。
追上乙并返回,需要10÷(3-1)×2=10分钟
追上甲并返回,需要10×3÷(3-1)×2=30分钟
再追上乙并返回,需要(10×2+30)÷(3-1)×2=50分钟
共用10+30+50=90分钟
5.小学生奥数多人行程练习题 篇五
1、甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车。2、铁路旁的一条平行小路上,有一行人与一骑车人同时向南行进。行人速度为3.6千米/小时,骑车人速度为10.8千米/小时。这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒。这列火车的车身总长是多少米?
3、小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?
4、甲、乙两船在静水中速度分别为每小时24千米和每小时32千米,两船从某河相距336千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?
5、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。