最大公约数和最小公倍数 知识对对碰 1. 基本知识 (1)约数与最大公约数 几个数公有的约数,叫做这几个数的公约数,所有的公约数中最大的一个叫做这几个数的最大公约数。 自然数a,b的最大公约数记作(a,b),例如(12,8)=4,(4,6,10) =2。 如果(a,b)=l,则a与b互质。如果a是b的倍数,则(a,b)=b。 自然数a能被自然数b整除,则称a是b的倍数,b是a的约数。 (2)倍数与最小公倍数 几个自然数公有的倍数,叫做这几个数的公倍数。公倍数中最小的一个叫做这几个数的最小公倍数。一般用符号[a,b]表示a,b的最小公倍数,例如:[4,10] =20。 (3)求解方法 ①求最大公约数常用的方法:短除法,列举法,分解质因数法,辗转相除法。 ②求最小公倍数常用的方法:短除法,分解质因数法,列举法,最大公约数法。 2.性质 (1)两个数的最大公约数的约数,都是这两个数的公约数。 如果(a,b)=d,c|d,那么c|a,c|b。 (2)两个数分别除以它们的最大公约数,所得的商一定是互质的。 如果(a,b)=d,那么(a÷d,b÷d)=1。 (3)若一个数c能同时被两个自然数a,b整除,那么c一定能被这两个数的最小公倍数整除。或者说,一些数的公倍数一定是这些数的最小公倍数的倍数。 (4)两个自然数的最大公约数与最小公倍数的乘积等于这两个数的乘积。 例1(★)已知两个数分别是4和B,已知4 =2×2×3×5.B=2×3×3×5,求A,B的最大公约数。 例2(★)一箱图书可以平均分给2,3,4,5,6名小朋友,这箱图书最少有多少本? 例3(★)三个人绕环行跑道练习骑自行车,他们骑一圈的时间分别是半分钟,45秒钟和1分15秒钟,三人同时从起点出发,最少需要多长时间才能再次同时在起点相会? 例4(★)在1500 -8000之间能同时被12,18,24和42四个数整除的自然数共有多少个? 例5(★)将一块长3.57米,宽1.05米,高0.84米的长方体木料,锯成同样大小的正方体小木块,问当正方体的边长是多少时,用料最省且小木块的体积最大?(不计锯时的损耗,锯完后木料不许有剩余) 例6(★)加工某种机器零件,要经过三道工序。第一道工序每个工人每小时可完成6个零件,第二道工序每个工人每小时可完成10个零件,第三道工序每个工人每小时可完成15个零件,要使加工生产均衡,试设计三道工序工人人数的分配方案。 例7(★★)有3根钢管,其中第一根的长度是第二根的1.6倍,是第三根的一半,第三根比第二根长220厘米。现在把这三根钢管截成尽可能长而又相等的小段,问共可以截成多少段。 例8(★★)四(1)班学生分组做游戏,如果每3人一组就多出1人,如果每4人一组就多出2人,如果每5人一组就多出3人。问:这个班至少有多少个学生? 例9(★★)一支队伍不超过1000人,列队时分别按2人、3人、4人、5人、6人一排,最后一排都缺1人,改为7人一排时正好。问:这支队伍共有多少人? 例10(★★)用自然数a去除374,410,464,得到相同的余数。a最大是多少? 例11(★★★)两个自然数的差是27,它们的最大公约数与最小公倍数的和是1179。那么这两个数的和是_________。 魔法训练营 1.A、B两个数都恰恰只含有质因数3和5,它们的最大公约数是75,已知A有12个约数,B有10个约数,那么A、B两数的和等于多少? 2.有12分米长的铁丝12根,18分米长的铁丝9根,24分米长的铁丝10根。现在要把它们截成一样长的铁丝,不能浪费,截下的铁丝要最长,铁丝长是多少分米?可以截成多少根? 3.有铅笔433支、橡皮260块,平均分配给若干小学生。学生人数在30~ 50之间,分到最后余铅笔13支、橡皮8块,问小学生究竟有多少人。 4.把一张长147厘米、宽105厘米的长方形纸截成大小一样且长与宽之比是5:3的长方形纸,且没有剩余,问最少可截成几张。 5.现有252个红球,396个蓝球,498个黄球。把它们分组装在n个袋子里,要求每个袋子里都有红、黄、蓝三种颜色的球,而且每个袋子里的红球数相同,黄球数相同,蓝球数也相同。求n最大是几。 本文来源:https://www.wddqw.com/doc/0773f5a626d3240c844769eae009581b6bd9bd98.html