9.3 分式方程 第1课时 分式方程及其解法 1.了解分式方程的概念;(重点) 2.掌握可化为一元一次方程的分式方程的解法,知道转化的思想方法在解分式方程中的应用;(重点) 3.了解增根的概念,会检验一个数是不是分式方程的增根,会根据增根求方程中字母的值.(难点) 一、情境导入 1.什么是方程? 2.什么是一元一次方程? 3.解一元一次方程的一般步骤是什么? 我们今天将学习另外一种方程——分式方程.二、合作探究 探究点一:分式方程的概念 下列方程是分式方程的是( ) 23A.= x+1x-123B.x-1=x+2 321C.x2-x=1 22D. x-3解析:根据分式方程的定义,分母含有未知数的方程是分式方程,B,C选项是整式方程,D选项是分式,只有A选项分母含有未知数,并且是方程.故选A. 方法总结:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数,如果分母中含有未知数就是分式方程,分母中不含未知数就不是分式方程. 探究点二:分式方程的解法 【类型一】 解分式方程 解方程: 1-x571(1)=; (2)=-3. xx-2x-22-x解析:分式方程两边同乘以最简公分母,把分式方程转化为整式方程求解,注意验根. 解:(1)方程两边同乘x(x-2),得5(x-2)=7x,5x-10=7x,2x=-10,解得x=-5. 检验:把x=-5代入最简公分母,得x(x-2)≠0,∴x=-5是原方程的解; (2)方程两边同乘最简公分母(x-2),得1=x-1-3(x-2),解得x=2.检验:把x=2代入最简公分母,得x-2=0,∴原方程无解. 方法总结:解分式方程的步骤:①去分母;②解整式方程;③检验;④写出方程的解.注意检验有两种方法,一是代入原方程,二是代入去分母时乘的最简公分母,一般是代入公分母检验. 【类型二】 由分式方程的解确定字母的取值范围 2x+a 关于x的方程=1的解是正数,则a的取值范围是____________. x-12x+a解析:去分母得2x+a=x-1,解得x=-a-1,∵关于x的方程=1的解是正数,x-1∴x>0且x≠1,∴-a-1>0且-a-1≠1,解得a<-1且a≠-2,∴a的取值范围是a<-1且a≠-2. 方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0. 探究点三:分式方程的增根 【类型一】 求分式方程的增根 3a4 若方程=+有增根,则增根可能为( ) x-2xx(x-2)A.0 B.2 C.0或2 D.1 解析:∵最简公分母是x(x-2),方程有增根,则x(x-2)=0,∴x=0或x=2.去分母得3x=a(x-2)+4,当x=0时,2a=4,a=2;当x=2时,6=4不成立,∴增根只能为x=0.故选A. 方法总结:增根是使分式方程的分母为0的根.所以判断增根只需让分式方程的最简公分母为0;注意应舍去不合题意的解. 【类型二】 分式方程有增根,求字母的值 2m 如果关于x的分式方程=1-有增根,则m的值为( ) x-3x-3A.-3 B.-2 C.-1 D.3 解析:方程两边同乘以x-3,得2=x-3-m①.∵原方程有增根,∴x-3=0,即x=3.把x=3代入①,得m=-2.故选B. 方法总结:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 【类型三】 分式方程无解,求字母的值 2mx3 若关于x的分式方程+2=无解,求m的值. x-2x-4x+2解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根. 解:方程两边都乘以(x+2)(x-2)得2(x+2)+mx=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②方程有增根,则x=2或x=-2,当x=2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;当x=-2时,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6. 方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根 本文来源:https://www.wddqw.com/doc/3260ac8db3717fd5360cba1aa8114431b90d8e9a.html