. 《数学》第一章有理数的所有概念 基础知识: 1、大于0的数叫做正数;小于0的数叫做负数。 2、0既不是正数也不是负数。 3、正整数、0、负整数、正分数、负分数这样的数称为有理数。 (有限小数和无限循环小数都可化为分数) 4、通常,用一条直线上的点表示数,这条直线叫做数轴。 数轴满足以下要求: (1)在直线上任取一个点表示数0,这个点叫做原点; (2)通常规定直线上从原点向右(或上)为正方向,从原点向左 (或下)为负方向; (3)选取适当的长度为单位长度。 5、绝对值相等,只有负号不同的两个数叫做互为相反数。 6、一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。 记做|a|。 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。 7、有理数加法法则 (1)同号两数相加,取相同的符号,并把绝对值相加。 (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0. (3)一个数同0相加,仍得这个数。 加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。 加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数 相加,和不变。表达式:(a+b)+c=a+(b+c) 8、有理数减法法则 减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b) 9、有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数同0相乘,都得0. 乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba 精品 . 乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc) 乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。表达式:a(b+c)=ab+ac 1精品 本文来源:https://www.wddqw.com/doc/4b60aa01df88d0d233d4b14e852458fb760b3870.html