1.2.4绝对值教案 教学内容:课本第11页至第12页 教学目标: 1、借助数轴初步理解绝对值的概念,能求一个数的绝对值。 2、正确理解绝对值的代数意义和几何意义。 3、掌握绝对值的非负性、双值性。 4、渗透数形结合与分类讨论的思想。 教学重点:理解绝对值的概念,能求一个数的绝对值。 教学难点:正确理解绝对值的代数意义和几何意义。 教学过程: 一、 复习 1、 什么叫互为相反数? 2、 在数轴上表示互为相反数的两点和原点的位置关系怎样? 二、讲授新知 1、 绝对值的概念: 观察课本第11页图1.2-5得出绝对值的概念: 一般地,数轴上表示数a的点与原点的距离叫数a的绝对值, 记作|a| 2、 绝对值的代数意义: 试一试:(1)|+6|= ,|0.2|= , |+8.2|= ; (2)|0|= ; (3)|-3|= ,|-0.2|= , |-8.2|= . 由绝对值的意义,结合上面口答结果,引导学生归纳出: (1)的绝对值是它本身; (2)零的绝对值是零; (3)一个负数的绝对值是它的相反数. 上述式子可以表示为: (1) 当a是正数时, |a|=____ (2) 当a=0时, |a|=____ (3) 当a是负数时, |a|=____ 例1 求下列各数的绝对值: 11 7,,4.75,10.5. 210 例2 化简: 1121. 1;23练习: 1、第12页练习1 2、填空: (1)绝对值等于本身的数是_______,绝对值等于它的相反 数的数是__________ (2) 如果|a|=a,则a是__________数, 如果|a|=-a,则a 是__________数 3、 绝对值具有非负性和双值性: 提问: (1)任何一个有理数都有绝对值吗?一个数的绝对值有几个? (2)有没有一个数的绝对值等于-2?任何一个数的绝对值一定是 怎样的数? (3)绝对值等于2的数有几个?它们是什么? 归纳: (1) 非负性:不论有理数a取何值,它的绝对值总是正数或0(通 常也称非负数).即对任意有理数a,总有 a0. (2)双值性:两个互为相反数的绝对值相等,即|a|=|-a| 练习: 教学小结: 和学生一起归纳本节课主要内容: 1、从数轴看,一个数a的绝对值就是数轴上表示数a的点到原点的距离. 2、一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数; 零的绝对值是零. 3. 绝对值具有非负性和双值性。 课堂练习: 1.填空: (1) -3的符号是______, 绝对值是____; (2) 符号是“+”号,绝对值是7的数是_____; (3) 10.5的符号是_____, 绝对值是______; (4) 绝对值是5.1,符号是“-”号的数是_____. (5)_________绝对值等于本身的数, ________绝对值等于它的相反 (6)a________时, |a|=a, a________时, |a|=-a (7) |-35.6|=________, |a|=_____(a<0) (8) |x|=5,则x=______ (9)绝对值小于4的整数有________ 本文来源:https://www.wddqw.com/doc/89f4b84f1511cc7931b765ce0508763230127449.html