菱形的判定

时间:2023-02-20 10:07:16 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
2课时 菱形的判定

1.掌握菱形的判定方法;(重点)

2.探究菱形的判定条件并合理利用它进行论证和计算.(难点)

一、情境导入

我们已经知道,有一组邻边相等的平行四边形是菱形.这是菱形的定义,我们可以根据定义来判定一个四边形是菱形.除此之外,还能找到其他的判定方法吗?

菱形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:

1.两条对角线互相垂直平分; 2.四条边都相等;

3.每条对角线平分一组对角.

这些性质,对我们寻找判定菱形的方法有什么启示呢?

二、合作探究

探究点一:菱形的判定

【类型一】 利用有一组邻边相等的平行四边形是菱形判定四边形是菱形

如图,在△ABC中,D

E分别是AB

AC的中点,BE2DE,延长DE到点F,使得EFBE,连接CF.

求证:四边形BCFE是菱形.

解析:由题意易得,EFBC平行且相等,四边形BCFE是平行四边形.又EFBE,∴四边形BCFE是菱形.

证明:BE2DEEFBEEF2DE.DE分别是ABAC的中点,BC2DEDEBCEFBC.又∵EFBC∴四边形BCFE是平行四边形.又∵EFBE,∴四边形BCFE是菱形.

方法总结:菱形必须满足两个条件:一是平行四边形;二是一组邻边相等.

【类型二】 利用对角线互相垂直的平行四边形是菱形判定四边形是菱形

如图,AEBFAC平分∠BAD

,且交

BF于点CBD平分∠ABC,且交AE于点D,连CD.求证:

(1)ACBD

(2)四边形ABCD是菱形.

解析:(1)证得BAC是等腰三角形后利用线合一的性质得到ACBD即可;(2)首先证得四边形

ABCD是平行四边形,然后根据对角线互相垂直得到平行四边形是菱形.

证明:(1)AEBF,∴∠BCA=∠CAD.AC平分∠BAD∴∠BAC=∠CAD∴∠BCA=∠BAC∴△BACBDABCACBD

(2)∵△BAC是等腰三角形,ABCB.BD分∠ABC,∴∠CBD=∠ABD.AEBF,∴∠CBD=∠BDA,∴∠ABD=∠BDA,∴ABAD,∴DACB.BCDAABCD形.∵ACBD,∴四边形ABCD是菱形.

方法总结:用判定方法对角线互相垂直的平行四边形是菱形证明四边形是菱形的前提条件是该四边形是平行四边形;对角线互相垂直的四边形不一定是菱形.

【类型三】 利用四条边相等的四边形是菱判定四边形是菱形

如图,已知△ABC,按如下步骤作图:



①分别以AC为圆心,大于1

2

AC的长为半径画

弧,两弧交于PQ两点;

②作直线PQ,分别交ABAC于点ED,连CE

③过CCFABPQ于点F,连接AF. (1)求证:△AED≌△CFD

(2)求证:四边形AECF是菱形. 解析:(1)由作图知PQ为线段AC的垂直平分线,从而得到AECEADCD.然后根据CFAB得到EACFCACFDAED,利用AAS证得两三角形全等即可;(2)根据(1)中全等得到AECF.然后根据EF为线段AC的垂直平分线,得到ECEAFCFA.从而得到ECEAFCFA利用边相等的四边形是菱形判定四边形AECF为菱形.

证明:(1)由作图知PQ为线段AC的垂直平分线,AECEADCD.CFAB∴∠EAC=∠FCACFDAED.AEDCFD

EAC=∠FCA

AED=∠CFD∴△AED≌△CFD(AAS) ADCD

(2)∵△AED≌△CFD,∴AECF.EF为线段AC的垂直平分线,ECEAFCFAECEAFCFA,∴四边形AECF为菱形.




方法总结:判定一个四边形是菱形把握以下两起点:(1)以四边形为起点进行判定;(2)以平行四边形为起点进行判定.

探究点二:菱形的判定的应用

【类型一】 菱形判定中的开放性问题

如图,平行四边形ABCD中,AF

CE

别是∠BAD和∠BCD的平分线,根据现有的图形,请添加一个条件,使四边形AECF为菱形,则添加的一个条件可以是__________(只需写出一个即可,图中不能再添加别的“点”和“线”)

解析:ADBC∴∠FADAFB.AFBAD的平分线,∴∠BAFFAD∴∠BAFAFBABBF.同理EDCD.ADBCABCDAECF.AECF四边形AECF是平行四边形.对角线互相垂直的平行四边形是菱形,则添加的一个条件可以是ACEF.

方法总结:菱形的判定方法常用的是三种:(1)定义;(2)四边相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.

【类型二】 菱形的性质和判定的综合应用

如图,在四边形ABCD中,AB

ADCB

CDECD上一点,BEACF,连接DF.

(1)求证:∠BAC=∠DAC,∠AFD=∠CFE (2)ABCD,试证明四边形ABCD是菱形; (3)(2)的条件下,试确定E点的位置,使得EFD=∠BCD,并说明理由.

解析:(1)首先利用SSS证明ABC≌△ADC可得BACDAC.再证明ABF≌△ADF,可得AFDAFB,进而得到AFDCFE(2)先证明CADACD,再根据等角对等边可得ADCD.再由条件ABADCBCD,可得ABCBCDAD可得四边形ABCD是菱形;(3)首先证明BCF≌△DCF,可得CBFCDF再根据BECD可得BECDEF90°进而得EFDBCD.

ABAD

(1)证明:在△ABC和△ADC中,

BCDC

ACAC

∴△ABC≌△ADC(SSS)∴∠BACDAC.ABFADF

ABAD

BAF=∠DAF

AFAF

∴△ABF≌△ADF(SAS)



∴∠AFD



AFB.∵∠AFB=∠CFE,∴∠AFD=∠CFE



(2)ABCD∴∠BACACD.∵∠BACDAC∴∠CADACDADCD.ABADCBCD,∴ABCBCDAD∴四边形ABCD是菱形;

(3)解:EBCDE时,∠EFD=∠BCD.由如下:∵四边形ABCD为菱形,BCCDBCF

BCCD

=∠DCF.在△BCF和△DCF中,

BCF=∠DCF

CFCF

∴△BCF≌△DCF(SAS)∴∠CBF

CDF.BECD∴∠BECDEF90°BCD+∠CBF=∠EFD+∠CDF90°,∴∠EFD=∠BCD.

方法总结:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.

三、板书设计 1.菱形的判定

有一组邻边相等的平行四边形是菱形; 对角线互相垂直的平行四边形是菱形; 四条边相等的四边形是菱形. 2.菱形的性质和判定的综合运用 在运用判定时,要遵循先易后难的原则,让学生先会运用判定解决简单的证明题,再由浅入深,学会灵活运用.通过做不同形式的练习题,让学生能准确掌握菱形的判定并会灵活运用






本文来源:https://www.wddqw.com/doc/dd912ac05bcfa1c7aa00b52acfc789eb162d9ece.html