“菱形的判定”说课稿 菱形(第2课时) 一、说教材。 二、说教法。 三、说学法。 四、说教学过程。 一、说教材 的判定,尝试寻求菱形的判别方法,并能有效的解决问题。 (2)教学目标: 知识与技能:探究菱形的判定方法,掌握菱形的判定定理.了解菱形在实际问题中的应用. 过程与方法:经历思索菱形判定思想的过程,领会菱形的概念以及应用方法,发展学生主动探究的思想和说理的基本方法. 情感态度与价值观:培养良好的思维意识以及合情推理水平,感悟其应用价值. (3)教学重点:菱形的判定定理的探究。 (4)教学难点:菱形的判定定理的探究和应用。 二、说教法: (1)创设问题情境,恰当设疑,引发学生兴趣。 (2)采用直观操作和几何论证相结合的探究式的教学方法。既注重学生学习的结果,更注重他们学习的过程,进一步培养学生的形象思维和逻辑推理水平。 (3)吃透教材、把握重点、分散难点、面向全体学生,因材施教。 三、说学法: 在学生的学习方式上,采用动手实践,自主探究与合作交流相结合的方式使学习过程直观化、形象化。 四、说教学过程: (一)、回顾导入 (1)由菱形的定义判定菱形。学生复习菱形的定义、菱形的性质,教师明确菱形的定义既是菱形的性质,又可作为菱形的第一种判别方法。 即:有一组邻边相等的平行四边形是菱形。 (2)菱形还有其他的判别方法吗? 设计意图:由菱形的定义得出菱形的第一个判别方法,并激发学生探究的欲望。 (二)、教具演示,观察发现 一张长方形纸片,对折两次,并沿图(3) (.图见课件)中的斜线剪开,把剪下的1这部分展开,平铺在桌面上 议一议:(1)根据折叠, 剪裁的过程,这个四边形的边和对角线分别具有什么性质? (2)剪出的这个图形是哪一种四边形? (3)一个四边形或平行四边形具备怎样的条件,就能够判定它是菱形? 猜想: 1.对角线互相垂直的平行四边形是菱形。 2.四条边相等的四边形是菱形 3.验证两条猜想 【形成定理】(教师出示) 菱形的判定方法: 1.对角线互相垂直的平行四边形是菱形。 菱形的判定定理1的推论:对角线互相垂直平分的四边形是菱形 2.四条边相等的四边形是菱形 【归纳方法】(学生归纳设计意图:通过实验操作,巩固了平行四边形的判别方法,培养学生的观察水平和推理水平,经历探究物体与图形的形状、大小、位置关系和变换的过程,培养猜想意识,培养学生的观察、实验、猜想等合情推理水平。通过对猜想的论证,体现了直观操作与逻辑推理的有机结合,让学生进一步理解逻辑推理的必要性。 随堂练习:见课件 (三)、范例点击,应用所学 例1 如图,ABCD的对角线AC、BD交于O,AB=5,AO=4,BO=3,求证形.(•投影显示) ABCD是菱 思路点拨:由于平行四边形对角线互相平分,构成了△ABO是一个三角形,•而AB=5,AO=4,BO=3,由勾股定理可知∠AOB=90°,这样可利用菱形判定定理证得. (四)、练习: 已知:平行四边形ABCD的对角线AC的垂直平分线与边 AD、BC分别交于E、F. 求证:四边形AFCE是菱形. 学生独立思考,教师点拨思路。学生板演,教师点评。 (五)课堂总结 通过探究本节课你得到了哪些结论?有什么理解? (六)、课后作业、1.102页习题5.10题 2.预习正方形的性质 本文来源:https://www.wddqw.com/doc/ea7b01e15d0e7cd184254b35eefdc8d377ee1431.html