数的奇偶性 教学目标: 1、在实践活动中认识奇数和偶数 ,了解奇偶性的规律。 2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。 3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。 教学重点: 探索并理解数的奇偶性 教学难点: 能应用数的奇偶性分析和解释生活中一些简单问题 教学过程: 一、游戏导入,感受奇偶性 1、游戏:换座位 首先将全班45个学生分成6组,人数分别为5、6、7、8、9、10。我们大家来做个换位置的游戏:要求是只能在本组内交换,而且每人只能与任意一个人交换一次座位。 (游戏后学生发现6人、8人、10人一组的均能按要求换座位,而5人、7人、9人一组的却有一人无法跟别人换座位) 2、讨论:为什么会出现这种情况呢? 学生能很直观的找出原因,并说清这是由于6、8、10恰好是双数,都是2的倍数;而5、7、9是单数,不是2的倍数。 (此时学生议论纷纷,正是引出偶数、奇数的最佳时机) 3、小结:交换位置时两两交换,刚好都能换位置,像6、8、10……是2的倍数,这样的数就叫做偶数;而有人不能与别人换位置,像5、7、9……不时的倍数,这样的数就叫做奇数。 学生相互举例说说怎样的数是奇数,怎样的数是偶数。 二、猜想验证, 认识奇偶性 1、设置悬念、激发思维 现在我们继续来考虑六组人数:5人、6人、7人、8人、9人、10人,那么猜猜那些组合起来能够刚好换完?那些不能? 2、学生猜想、操作验证 学生独立猜想,小组内汇报交流,然后统一意见进行验证(要求:验证时多选择几组进行证明)。 汇报成果: 奇数﹢奇数=偶数 奇数-奇数=偶数 奇数+奇数+……+奇数=奇数 奇数个 偶数+偶数=偶数 偶数-偶数=偶数 奇数+奇数+……+奇数=偶数 偶数个 奇数+偶数=奇数 奇数-偶数=奇数 偶数+偶数+……+偶数=偶数 你能举几个例子说明一下吗? (学生的举例可以引导从正反两个角度进行) 3、深化 请同学们闭上眼睛,想一想:2+4+6+8+……+98+100这么多偶数相加的和是偶数还是奇数?为什么? 三、实践操作、应用奇偶性 我们已经知道了奇偶数的一些特性,现在要用这些特性解决我们身边经常发生的问题。 1、一个杯子,杯口朝上放在桌上,翻动一次,杯口朝下。翻动两次,杯口朝上……翻动10次呢?翻动100次?105次? 学生动手操作,发现规律:奇数次朝下,偶数次朝上。 2、有3个杯子,全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转,使得3个杯子全部杯口朝下? 你手上只有一个杯子怎么办?(学生:小组合作) 学生开始动手操作。 反馈:有一小部分学生说能,但是上台展示,要么违反规则,要么无法进行下去。 引导感受:如果我们分析一下每次翻转后杯口朝上的杯子数的奇偶性,就会发现 本文来源:https://www.wddqw.com/doc/df71f2eb5df7ba0d4a7302768e9951e79b8969b7.html