3.2 解一元一次方程(一)——合并同类项与移项 第1课时 用合并同类项的方法解一元一次方程 1.会利用合并同类项的方法解一元一次方程;(重点) 2.通过对实例的分析、体会一元一次方程作为实际问题的数学模型的作用.(难点) 一、情境导入 1.等式的基本性质有哪些? 2.解方程:(1)x-9=8; (2)3x+1=4. 3.下列各题中的两个项是不是同类项? (1)3xy与-3xy; (2)0.2ab与0.2ab; (3)2abc与9bc; (4)3mn与-nm; (5)4xyz与4xyz; (6)6与x. 4.能把上题中的同类项合并成一项吗?如何合并? 5.合并同类项的法则是什么?依据是什么? 二、合作探究 探究点一:利用合并同类项解简单的一元一次方程 解下列方程: (1)9x-5x=8; (2)4x-6x-x=15. 解析:先将方程左边的同类项合并,再把未知数的系数化为1. 解:(1)合并同类项,得4x=8. 系数化为1,得x=2. (2)合并同类项,得-3x=15. 系数化为1,得x=-5. 方法总结:解方程的实质就是利用等式的性质把方程变形为x=a的形式. 探究点二:根据“总量=各部分量的和”列方程解决问题 足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3∶5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个? 解析:遇到比例问题时可设其中的每一份为x,本题中已知黑、白皮块数目比为3∶5,可设黑色皮块有3x个,则白色皮块有5x个,然后利用相等关系“黑色皮块数+白色皮块数=32”列方程. 解:设黑色皮块有3x个,则白色皮块有5x个, 根据题意列方程3x+5x=32, 解得x=4, 则黑色皮块有3x=12(个), 白色皮块有5x=20(个). 第 1 页 共 2 页 答:黑色皮块有12个,白色皮块有20个. 方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解.此题的关键是要知道相等关系为:黑色皮块数+白色皮块数=32,并能用x和比例关系把黑皮与白皮的数量表示出来. 三、板书设计 1.用合并同类项的方法解简单的一元一次方程. 解方程的步骤: (1)合并同类项; (2)系数化为1(等式的基本性质2). 2.找等量关系列一元一次方程. 列方程解应用题的步骤: (1)设未知数; (2)分析题意找出等量关系; (3)根据等量关系列方程; (4)解方程并作答. 本节从复习入手,帮助学生回顾合并同类项的相关知识,为学习用合并同类项解方程做好铺垫.教学中采用引导发现的方法,课堂训练中鼓励自己动手,体现学生在课堂上的主体地位;整个教学过程中充分调动学生学习积极性,培养学生合作学习,主动探究的习惯. 第 2 页 共 2 页 本文来源:https://www.wddqw.com/doc/6505a889e73a580216fc700abb68a98271feac70.html