16.1.1从分数到分式 一、 教学目标 1. 了解分式、有理式的概念. 2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点 1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 3.认知难点与突破方法 难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别. 三、例、习题的意图分析 本章从实际问题引出分式方程100=60,给出分式的描述性的定义:像这样分母中20v20v含有字母的式子属于分式. 不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程. 1.本节进一步提出P4[思考]让学生自己依次填出:10,s,200,v.为下面的[观察]720v20vABa33s提供具体的式子,就以上的式子100,60,s,v,有什么共同点?它们与分数有什么as相同点和不同点? 可以发现,这些式子都像分数一样都是 (即A÷B)的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母. P5[归纳]顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别. 希望老师注意:分式比分数更具有一般性,例如分式商(除式不能为零),其中包括所有的分数 . 2. P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式 A 可以表示为两个整式相除的BA 才有意义. B3. P5例1填空是应用分式有意义的条件—分母不为零,解出字母x的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础. 4. P12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补充的1分母不能为零;2例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:○○分子为零.这两个条件得到的解集的公共部分才是这一类题目的解. 四、课堂引入 1.让学生填写P4[思考],学生自己依次填出:10,s,200,v. 7a33s2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 请同学们跟着教师一起设未知数,列方程. 设江水的流速为x千米/时. 轮船顺流航行100千米所用的时间为100小时,逆流航行60千米所用时间60小时,20v20v所以100=60. 20v20v20v20v3. 以上的式子100,60,s,v,有什么共同点?它们与分数有什么相同点和不as同点? 五、例题讲解 P5例1. 当x为何值时,分式有意义. [分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x的取值范围. [提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念. (补充)例2. 当m为何值时,分式的值为0? 2(1)m m11(2) (3) m3mm2m11分母不能为零;○2分子为零,这[分析] 分式的值为0时,必须同时满足两个条件:○..样求出的m的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习 1.判断下列各式哪些是整式,哪些是分式? 9x+4, 7 , 9y, m4, 8y3,1 xx9205y22. 当x取何值时,下列分式有意义? (1) (2) (3) x2432xx23. 当x为何值时,分式的值为0? 3x52x5x21x77x(1) (2) (3) x2x5x213x七、课后练习 1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式? (1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时. (2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x与y的差于4的商是 . x212.当x取何值时,分式 无意义? 3x2 本文来源:https://www.wddqw.com/doc/72013ed083eb6294dd88d0d233d4b14e85243e47.html