1、2.3 相反数 目标预设 一、 知识与能力 借助数轴理解相反数概念,知道互为相反数的一对数在数轴上位置关系。会求一个有理数的相反数。 二、 过程与方法 经历从实际中抽出数学模型,从数形结合两个侧面理解问题,并能选择处理数学信息,做出大胆猜测。 三、 情感态度与价值观 使学生能积极参与数学学习活动,对数学有好奇心和求知欲。 重点与难点 重点 理解相反数的意义,理解相反数的代数意义与几何意义的一致性。 难点 多重符号的化简。 教学准备 多媒体教学平台 教学过程 一、 创设情景,谈话导入 1、画一个数轴,并在画的数轴上找出表示+5、-5、+3、 -3、1、-1各数的点来,并要标上字母。 (独立思考,发现新知) 2、观察上题中的+5、-5、+3、-3、1、-1, 发现这三对数有什么特点? (小组讨论,代表发言,学生点评) 3、观察上题中的+5、-5、+3、-3、1、-1, 发现这三对数在数轴上的对应点的位置有什么特点? (小组讨论,代表发言,学生点评) 二、 精讲点拨,质疑问难 给出相反数定义 1、由以上几个问题,得出:像这样,只有符号不同的两个数,我们说它们互为相反数。(相反数的代数意义) 2、也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为相反数。 (这个概念很重要,它帮助我们直观地看出相反数的意义,所以有的书上称它为相反数的几何意义) 3、特别地,0的相反数仍是0。这是因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于它本身的唯一的数。 三、 课堂活动,强化训练 例1、①分别写出9与-7的相反数。 ②指出-2.4与各是什么数的相反数。 例1由学生自己完成。 在学习有理数时我们就指出字母可以表示一切有理数,那么数a的相反数如何表示?引导学生观察例1,自己得出结论:数a的相反数是-a,即在一个数前面加上一个负号即是它的相反数。 1、 当a=7时,-a=-7,7的相反数是-7; 2、 当a=-5时,-a=-(-5),读作“-5的相反数”,-5的相反数是5,因此,-(-5)=5 3、 当a=0时,-a=-0,0的相反数是0,因此,-0=0 观察2,-a=-(-5)表示-5的相反数,那么-(-8),-(+4),-(-)各表示什么意思?引导学生回答: -(-8)表示-8的相反数,-(+4)表示+4的相反数,-(-)表示-的相反数 例2、简化-(+3),-(-4),+(-6),+(+5)的符号。 能自己总结出简化符号的规律吗? (小组讨论,积极探索,教师及时点评) 括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号外的符号与括号内的符号异号,则简化符号后的数是负数; 课堂练习: 1、填空: ①+1.3的相反数是 ;②-3的相反数是 ; ③ 的相反数是-1.7;④ 的相反数是。 ⑤-(+4)是 的相反数;⑥-(-7)是 的相反数。 2、简化下列各数的符号: -(+8),+(-9),-(-6),-(+7),+(+5) 3、下列两对数中,哪些是相等的数?哪对互为相反数? -(-8)与+(-8);-(+8)与+(-8)。 四、 延伸拓展,巩固内化 例3、化简:(1)-{-[―(-5)]},(2)-{ - } 例4、若:a<b<0,比较a,b,-a,-b的大小。 (用“<”连接) (小组讨论,积极探索,教师及时点评) 本文来源:https://www.wddqw.com/doc/16894167dc3383c4bb4cf7ec4afe04a1b171b0e4.html