直角三角形的性质及判定 • 直角三角形定义: 有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。 • 直角三角形的判定方法: 判定1:定义,有一个角为90°的三角形是直角三角形。 判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足定理的逆定理)。 判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。 判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。 判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么 判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。 判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。) ,那么这个三角形就是直角三角形。(勾股• 直角三角形性质: 直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质: 性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即图,∠BAC=90°,则AB2+AC2=BC2(勾股定理) 第1页 共2页 。如 性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90° 性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。 性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。 性质5: 如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下: (1)(AD)2=BD·DC。 (2)(AB)2=BD·BC。 (3)(AC)2=CD·BC。 性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。 在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。 性质7:如图,1/AB2+1/AC2=1/AD2 性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。 性质9:直角三角形直角上的角平分线与斜边的交点D 则 BD:DC=AB:AC 第2页 共2页 本文来源:https://www.wddqw.com/doc/ade05c2d152ded630b1c59eef8c75fbfc77d94bf.html