6.3.1实数教学设计(第一课时) 沧州市第十一中学 代丽丽 【教学目标】 知识与技能: ① 了解无理数和实数的概念以及实数的分类; ② 知道实数与数轴上的点具有一一对应的关系。 过程与方法: 在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类,接着把无理数在数轴上表示出来,从而得到实数与数轴上的点是一一对应的关系。 情感态度与价值观: ① 通过了解数系扩充体会数系扩充对人类发展的作用; ② 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。 教学重点: ① 了解无理数和实数的概念; ② 对实数进行分类。 教学难点:对无理数的认识。 【教学过程】 一、复习引入无理数: 34795利用计算器把下列有理数3,,,,写成小数的形式,它们有什么特58119征? 发现上面的有理数都可以写成有限小数或无限循环小数的形式 34791,50.5 5.875,0.8即:33.0,0.6,58119归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式, 反过来,任何有限小数或者无限循环小数也都是有理数。 通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数, 把无限不循环小数叫做无理数。 比如2,5,33等都是无理数。3.14159265…也是无理数。 二、实数及其分类: 1、实数的概念:有理数和无理数统称为实数。 2、实数的分类: 按照定义分类如下: 整数有理数小数)(有限小数或无限循环实数 分数数)无理数(无限不循环小按照正负分类如下: 正有理数正实数负无理数实数零 负有理数负实数负无理数3、实数与数轴上点的关系: 我们知道每个有理数都可以用数轴上的点来表示。物理是合乎是否也可以用数轴上的点表示出来吗? 活动1:直径为1个单位长度的圆其周长为π,把这个圆放在数轴上,圆从原点沿数轴向右滚动一周,圆上的一点由原点到达另一个点,这个点的坐标就是π,由此我们把无理数π用数轴上的点表示了出来。 活动2:在数轴上,以一个单位长度为边长画一个正方形,则其对角线的长度就是2以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示2,与负半轴的交点就是2。事实上通过这种做法,我们可以把每一个无理数都在数轴上表示出来,即数轴上有些点表示无理数。 归纳:①实数与数轴上的点是一一对应的。即没一个实数都可以用数轴上的点来表示; 反过来,数轴上的每一个点都表示一个实数。 ②对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。 三、应用: 例1、下列实数中,无理数有哪些? 2,3.14,35,0,10.12112111211112,π,(4)2。3 2,,0.717解:无理数有:2,35,π 注:①带根号的数不一定是无理数,比如(4)2,它其实是有理数4; ②无限小数不一定是无理数,无限不循环小数一定是无理数。 比如10.12112111211112。 例2、把无理数5在数轴上表示出来。 分析:类比2的表示方法,我们需要构造出长度为5的线段,从而以它为半径画弧,与数轴正半轴的交点就表示5。 解:如图所示,OA2,AB1, O B C A 由勾股定理可知:OB5,以原点O为圆心,以OB长度为半径画弧, 本文来源:https://www.wddqw.com/doc/e29c95d8dcccda38376baf1ffc4ffe473268fd29.html