二倍角公式大全(总1页) -本页仅作为预览文档封面,使用时请删除本页- 正弦二倍角公式: sin2α = 2cosαsinα 推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA 拓展公式:sin2A=2sinAcosA=2tanAcosA^2=2tanA/[1+tanA^2] 1+sin2A=(sinA+cosA)^2 余弦二倍角公式: 余弦二倍角公式有三组表示形式,三组形式等价: 2a=Cosa^2-Sina^2=[1-tana^2]/[1+tana^2] 2a=1-2Sina^2 2a=2Cosa^2-1 推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=(cosA)^2-(sinA)^2=2(cosA)^2-1 =1-2(sinA)^2 正切二倍角公式: tan2α=2tanα/[1-(tanα)^2] 推导:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-(tanA)^2] 降幂公式: cosA^2=[1+cos2A]/2 sinA^2=[1-cos2A]/2 变式:sin2α=sin2α+π4-cos2α+4π=2sin2a+4π-1=1-2cos2α+4π; cos2α=2sinα+4πcosα+4π 2 本文来源:https://www.wddqw.com/doc/ff4480315222aaea998fcc22bcd126fff6055db0.html