初中数学知识点精讲精析 平面图形的密铺

时间:2023-04-17 15:01:19 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
4·7 平面图形的密铺

要点精讲

1. 密铺的定义

用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠的铺成一片,叫作平面图形的密铺. 2. 密铺的特征

1)边长都相等;2)顶点公用;3)在一个顶点处各正多边形的内角和为3600 3. 能够密铺的多边形

能够密铺的多边形有三种:三角形、四边形、正六边形.学习中不仅要了解能密铺的多边形有哪些,还要了解为什么这些图形能够密铺,除了通过实际操作探索外,还要明白内在的数学上的理由.因为三角形的内角和是180°,把相同三角形的顶点拼结在一起时能够容纳6个角(其中三组角两两相等,恰好是两个三角形的内角)可以无重叠无空隙地拼接在一起,四边形是同样的解释.正六边形是因为它的每个内角是120°,把三个正六边形拼接在一起,三个内角的和恰为360°,也能无重叠、无空隙地拼接在一起. 难点:不理解密铺所具备的条件.

密铺所具备的条件是:多边形的几个内角拼在一起,恰好是360°,即这几个内角的和为360°.

易错点:误认为边数为偶数的正多边形都能够密铺.

比如:认为正八边形、正十边形可以密铺;其实正八边形、正十边形不能密铺,理由是正八边形的每个内角为135°,两个内角拼在一起小于360°,三个内角拼在一起大于 360°.不能无重叠、无空隙地拼在一起;正十边形也是同样的道理. 典型例题

1. 7个大小、形状完全相同的矩形不重复,无重叠地拼成如图所示的大矩形,大矩形的周长为68,则此大矩形的面积为多少?





解:设小矩形的长为x,宽为y,由图可知:

5yxy34



5y2x 6yx34即:

5y2x

y4x10


∴小矩形的面积为4×10=40,大矩形的面积为7×40=280

一变:如图所示,正方形是由K个形状大小完全相同的矩形密铺而成,其中上下各横排2个,中间竖排若干个,求K的值.





设正方形的边长为a,矩形的宽为x,则矩形的长为

一变解:

a2

由图可知:



∴中间有4个矩形,∴共有8个矩形,即:K=8.

点拨:此种题要与代数知识、及密铺的一些知识结合起来考虑.

aa2xax24


本文来源:https://www.wddqw.com/doc/4be0a66685868762caaedd3383c4bb4cf6ecb7d9.html