平行线的性质教案4 一、教材分析: 本节课是平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。 二、教学目标: 知识与技能:掌握平行线的性质,能应用性质解决相关问题。 数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。 解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。 情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。 三、教学过程: (一)创设情境,设疑激思: 1.播放一组幻灯片。内容:①火车行驶在铁轨上;②游泳池;③横格纸。 2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗? 学生活动: 思考回答。①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行; 教师:首先肯定学生的回答,然后提出问题。 问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢? 引出课题——平行线的性质。 (二)数形结合,探究性质 1.画图探究,归纳猜想 任意画出两条平行线(a∥b),画一条截线c与这两条平行线相交,标出8个角(如图)。 问题一:指出图中的同位角,并度量这些角,把结果填入下表: 第一组 第二组 第三组 第四组 同位角 ∠1 ∠5 角的度数 数量关系 学生活动:画图——度量——填表——猜想 结论: 两直线平行,同位角相等。 问题二:再画出一条截线d,看你的猜想结论是否仍然成立? 学生:探究、讨论,最后得出结论:仍然成立。 2.教师用《几何画板》课件验证猜想 3.性质1. 两条直线被第三条直线所截,同位角相等。(两直线平行,同位角相等) (三)引申思考,培养创新 问题三:请判断内错角、同旁内角各有什么关系? 学生活动:独立探究——小组讨论——成果展示。 教师活动:评价,引导学生说理。 因为a∥b 因为a∥b 所以∠1=∠2 所以∠1=∠2 又 ∠1=∠3 又 ∠1+∠4=180° 所以∠2=∠3 所以∠2+∠4=180° 语言叙述: 性质2 两条直线被第三条直线所截,内错角相等。 性质3 两条直线被第三条直线所截,同旁内角互补。 (四)实际应用,优势互补 (五)概括存储(小结) 1.平行线的性质1、2、3; 2.用“运动”的观点观察数学问题; 本文来源:https://www.wddqw.com/doc/848e812e0066f5335a812152.html