1.小学生奥数火车过桥练习题 篇一
1、一列慢车车身长125米,车速是每秒17米;一列快车车身长140米,车速是每秒22米。慢车在前面行驶,快车从后面追上到完全超过需要多少秒?思路点拨:快车从追上到超过慢车时,快车比慢车多走两个车长的和,而每秒快车比慢车多走(22-17)千米,因此快车追上慢车并且超过慢车用的时间是可求的。
(125+140)÷(22-17)=53(秒)
答:快车从后面追上到完全超过需要53秒。
2、甲火车从后面追上到完全超过乙火车用了110秒,甲火车身长120米,车速是每秒20米,乙火车车速是每秒18米,乙火车身长多少米?
(20-18)×110-120=100(米)
3、甲火车从后面追上到完全超过乙火车用了31秒,甲火车身长150米,车速是每秒25米,乙火车身长160米,乙火车车速是每秒多少米?
25-(150+160)÷31=15(米)
2.小学生奥数火车过桥练习题 篇二
1、一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。这条隧道长多少米?分析先求出车长与隧道长的和,然后求出隧道长。火车从车头进洞到车尾离洞,共走车长+隧道长。这段路程是以每秒8米的速度行了40秒。
解:(1)火车40秒所行路程:8×40=320(米)
(2)隧道长度:320-200=120(米)
答:这条隧道长120米。
2、一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过?
分析本题是求火车车头与小华相遇时到车尾与小华相遇时经过的时间。依题意,必须要知道火车车头与小华相遇时,车尾与小华的距离、火车与小华的速度和。
解:(1)火车与小华的速度和:15+2=17(米/秒)
(2)相距距离就是一个火车车长:119米
(3)经过时间:119÷17=7(秒)
答:经过7秒钟后火车从小华身边通过。
3.小学生奥数火车过桥练习题 篇三
1、一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?2、一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?
3、一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?
4、一列火车,通过300米长的`隧道,已知由车头开始进入洞口到车尾进入洞口共用9秒钟,又过了10秒钟,火车刚好全部通过隧道。求这列火车的长。
5、一列火车全长290米,每秒行驶25米,全车要通过一座长985米长的大桥,问需要多少秒钟?
4.小学生奥数奇偶性练习题 篇四
甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒。那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?分析:因为李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子。如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个。否则甲盒子中的黑子数不变。也就是说,李平每次从甲盒子拿出的。黑子数都是偶数。由于181是奇数,奇数减偶数等于奇数。所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子。
解答:解;他每拿一次,甲盒子中的棋子数就减少一个,
180+181-1=360(次)
所以拿360次后,甲盒里只剩下一个棋子;
李平每次从甲盒子拿出的黑子数都是偶数,
由于181是奇数,奇数减偶数等于奇数,
则甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,
所以甲盒里剩下的一个棋子应该是黑子。
答:这个棋子是黑色。
5.小学生奥数奇偶性练习题 篇五
1、江波、刘晓、吴萌三位老师,其中一位教语文,一位教数学,一位教英语。已知:江波和语文老师是邻居;吴萌和语文老师不是邻居;吴萌和数学老师是同学。请问:三位老师分别教什么科目?2、甲、乙、丙三个孩子踢球打碎了玻璃窗,甲说:“是丙打碎的”。乙说:“我没有打碎玻璃窗”,丙说:“是乙打碎的。”他们当中只有一个人说了谎话,到底是谁打碎了玻璃窗?
3、某学校为表扬好人好事核实一件事,老师找了A、B、C三个学生。A说:“是B做的”。B说:“不是我做的”。C说:“不是我做的”。这三个中只有一个人说了实话,这件好事是谁做的?
4、ABCD四个孩子踢球打碎了玻璃。A说:“是C或D打碎的”。B说:“是D打碎的”。C说:“我没有打碎玻璃窗”。D说:“不是我打碎的。”他们中只有一个人说了谎,到底是谁打碎了玻璃窗?
5、甲、乙、丙、丁四个人同时参加数学竞赛,赛后,甲说:“丙是第一名,我是第三名。”乙说:“我是第一名,丁是第四名”。丙说:“丁是第二名,我是第三名”。丁没有说话,成绩揭晓时,大家发现甲、乙、丙三个人各说对了一半,你能说出他们的名次吗?