小学生奥数乘法原理、不定方程、奇偶性练习题

时间:2023-02-15 03:24:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
【#小学奥数# 导语】在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。以下是®文档大全网整理的《小学生奥数乘法原理、不定方程、奇偶性练习题》相关资料,希望帮助到您。

1.小学生奥数乘法原理练习题 篇一

  1、小明在自助餐店就餐,他准备挑选三种肉类中的一种肉类,四种蔬菜中的二种不同蔬菜,以及四种点心中的一种点心。若不考虑食物的挑选次序,则他可以有多少不同选择方法?

  考点:乘法原理。

  分析:三种肉选一个有3种选法,四种蔬菜选两种有4×3÷2=6种选法,四种心选一个有4种选法,根据乘法原理,他可以有3×6×4=72种不同选择方法。

  解答:解:3×(4×3÷2)×4

  =3×6×4,

  =72(种)。

  答:他可以有72种不同选择方法。

  2、变速自行车主动车轴上有48、36、24三种齿数的轮子,后轴飞轮有36、16、12、24四种齿数的轮子,变速车共有多少种不同的速变?

  解:3×4=12(种)

  答:变速车共有12种不同的速变。

  3、在所有三位自然数中,不含数字"5"的三位数共有()个。

  答案解析:利用乘法原理,8×9×9=648(个)

2.小学生奥数乘法原理练习题 篇二

  1、如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对,问这样的数对共有多少个?

  分析:从两个极端来考虑这个问题:为9999-1078=8921,最小为9921-1000=8921,所以共有9999-9921+1=79个,或1078-1000+1=79个

  2、一本书从第1页开始编排页码,共用数字2355个,那么这本书共有多少页?

  分析:按数位分类:一位数:1~9共用数字1*9=9个;二位数:10~99共用数字2*90=180个;

  三位数:100~999共用数字3*900=2700个,所以所求页数不超过999页,三位数共有:2355-9-180=2166,2166÷3=722个,所以本书有722+99=821页。

  3、小学四年级奥数加法原理与乘法原理的练习题:上、下两册书的页码共有687个数字,且上册比下册多5页,问上册有多少页?

  分析:一位数有9个数位,二位数有180个数位,所以上、下均过三位数,利用和差问题解决:和为687,差为3*5=15,大数为:(687+15)÷2=351个(351-189)÷3=54,54+99=153页。

3.小学生奥数不定方程练习题 篇三

  1、某地收取电费的'标准是:每月用电不超过50度,每度收5角;如果超过50度,超出部分按每度8角收费。某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?

  因为33既不是5的倍数又不是8的倍数,所以甲用电超过50度,乙用电不足50度。设甲用电(50+x)度,乙用电(50-y)度。因为甲比乙多交33角电费,所以有:

  8x+5y=33。

  容易看出x=1时,y=5。推知甲用电51度,乙用电45度。

  2、一天,小强在家里做数学作业时,遇到了一题难题,这道题目是:有一次,小红问小军的生日,小军说:“把我的月份数乘以18,日期数乘以12的和只要等于108就行了。试用最单的方法算出小军的生日是几月几日?

  解:

  设小军的生日月份为x,月份的日期y

  18x+12y=108

  在解决问题的时候,小强的心里想:在方程式里,怎么会出现一个式子里就有两个未知数呢?突然间小强明白了这道题的方法:原来这是一道不定方程。

  小强问妈妈:什么是不定方程呢?妈妈说:在一个等式里未知数个数多于方程个数的方程叫做不定方程。例如:刚才你思考的题目中所列出的方程,就是属于不定方程。

  小强听了妈妈的讲解方法,终于解出了那道不定方程,他的解法是:将18x+12y=108,变形后得:y=(108-18x)÷12,即y=9-1.5x,因为x,y均为整数,且1≤x≤12,1≤y≤31,根据该方程,2≤x≤4,当x=2时,y=6;当x=4时,y=3。

4.小学生奥数不定方程练习题 篇四

  1、装热水批瓶的盒子有大、小两种,大的能装7个,小的能装4个,要把41个热水瓶装入盒内,问需要大、小盒子各多少个?

  2、说:“鸡翁一,直钱五,鸡母一,直钱三,鸡雏三,直钱一。百钱买百鸡,问鸡翁、母、雏各几何?”。设x,y,z分别表鸡翁、母、雏的个数,则此问题即为不定方程组的非负整数解x,y,z,这是一个三元不定方程组问题。

  3、某种笔记本大号1元钱3本,中号1元钱4本,小号1元钱5本,今用6元钱买得笔记本25本,问大、中、小号笔记本各几本?

  4、有甲、乙两种卡车,甲车每次可装煤6吨,乙车每次可装煤8吨,现在有煤130吨,要求一次运完,而且每一辆卡车都要满载,问甲、乙两种卡车各多少辆?

  5、一轧元钱买12张邮票,其中有四分的、八分的,也有二角的,问各买了几张?

5.小学生奥数奇偶性练习题 篇五

  1、小华买了一本共有96张练习纸的练习本,并依次将它的各面编号(即由第1面一直编到第192面)。小丽从该练习本中撕下其中25张纸,并将写在它们上面的50个编号相加。试问,小丽所加得的和数能否为2000?

  【分析】不可能。因为25个奇数相加的和是奇数,25个偶数相加是偶数,奇数加偶数=奇数

  2、有98个孩子,每人胸前有一个号码,号码从1到98各不相同。试问:能否将这些孩子排成若干排,使每排中都有一个孩子的号码数等于同排中其余孩子号码数的和?并说明理由。

  【分析】不可以。一名为98个数中有49个奇数,奇数加偶数等于奇数,奇数不是二的倍数。

  3、有20个1升的容器,分别盛有1,2,3,…,20立方厘米水。允许由容器A向容器B倒进与B容器内相同的水(在A中的水不少于B中水的条件下)。问:在若干次倒水以后能否使其中11个容器中各有11立方厘米的水?

  【分析】不可能,因为两个奇数相加等于偶数,两个偶数相加等于偶数,11是奇数,B是偶数,偶数不等于奇数。

本文来源:https://www.wddqw.com/M27m.html