球体体积公式的推导 1、如图,设球体的球心为O,半径为R,球体体积为V,用垂直于半径 OA的平面将半球分成n个圆柱体,则每个圆柱体的高是,半径分别为r1、r2、r3、…rn Rn 由相交弦定理得 r12 = ·(2R—) = R2(—RnRn2n1) , n2222R2R222r2 = ·(2R—) = R(—2) ,, nnnn2223R3R223r3 = ·(2R—) = R(—2), nnnn2 ………………… n2nRnR2n2 rn = ·(2R— ) = R ·( — 2) nnnn2 R32R32222 R3231 ∴V半球 = 兀·(—2)+兀·(—2)+兀·(—nnnnnnnn32)…… n2R3n22n+兀·( — 2) nnnR322222n122223 =兀·(+++……+ —2—2—2nnnnnnnnn2—……—2) nR3123n122232n2 =兀·(2×—) nn2nR31n2n1n1 =兀·〔n + 1—·〕 2n6n =兀R3 〔2n1n1〕 n11 —·n6n24n23n1 =兀R · 26n3 =兀R3 ·(+ 当n趋近于∞时,23112) 2n6n11 = 0,2 = 0, 2n6n23所以V半球 = 兀R3( + 0 + 0 ) = 兀R3 V球体体积 = 兀R3。 2343 本文来源:https://www.wddqw.com/doc/1a40301c0875f46527d3240c844769eae109a397.html